Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200235711> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3200235711 endingPage "56" @default.
- W3200235711 startingPage "44" @default.
- W3200235711 abstract "Machine learning methods face two main challenges in denoising tasks. One is the lack of supervised training data, and the other is the limited knowledge of complex unknown noise. In this paper, for seismic denoising, we propose a new method with three techniques to handle them effectively. First, a Generative Adversarial Network (GAN) is employed to generate a large number of paired clean-noisy data using real noise. Second, a deep denoising autoencoder (DDAE) is pre-trained using these data. Third, a transfer learning technique is used to train the DDAE further on a few field data. We have assessed the proposed method based on qualitative and quantitative analysis. Results show that the method can suppress seismic data noise well." @default.
- W3200235711 created "2021-09-27" @default.
- W3200235711 creator A5002508871 @default.
- W3200235711 creator A5011028459 @default.
- W3200235711 creator A5018381716 @default.
- W3200235711 creator A5070612539 @default.
- W3200235711 date "2021-01-01" @default.
- W3200235711 modified "2023-09-26" @default.
- W3200235711 title "DDAE-GAN: Seismic Data Denoising by Integrating Autoencoder and Generative Adversarial Network" @default.
- W3200235711 cites W1504409388 @default.
- W3200235711 cites W1629641951 @default.
- W3200235711 cites W2021734622 @default.
- W3200235711 cites W2037642501 @default.
- W3200235711 cites W2058005980 @default.
- W3200235711 cites W2076393573 @default.
- W3200235711 cites W2087995567 @default.
- W3200235711 cites W2141953966 @default.
- W3200235711 cites W2146842127 @default.
- W3200235711 cites W2177432006 @default.
- W3200235711 cites W2474817805 @default.
- W3200235711 cites W2508457857 @default.
- W3200235711 cites W2551161082 @default.
- W3200235711 cites W2766341514 @default.
- W3200235711 cites W2798278116 @default.
- W3200235711 cites W2968466051 @default.
- W3200235711 cites W3033557345 @default.
- W3200235711 cites W3046473778 @default.
- W3200235711 doi "https://doi.org/10.1007/978-3-030-87334-9_4" @default.
- W3200235711 hasPublicationYear "2021" @default.
- W3200235711 type Work @default.
- W3200235711 sameAs 3200235711 @default.
- W3200235711 citedByCount "1" @default.
- W3200235711 countsByYear W32002357112023 @default.
- W3200235711 crossrefType "book-chapter" @default.
- W3200235711 hasAuthorship W3200235711A5002508871 @default.
- W3200235711 hasAuthorship W3200235711A5011028459 @default.
- W3200235711 hasAuthorship W3200235711A5018381716 @default.
- W3200235711 hasAuthorship W3200235711A5070612539 @default.
- W3200235711 hasConcept C101738243 @default.
- W3200235711 hasConcept C108583219 @default.
- W3200235711 hasConcept C124101348 @default.
- W3200235711 hasConcept C153180895 @default.
- W3200235711 hasConcept C154945302 @default.
- W3200235711 hasConcept C163294075 @default.
- W3200235711 hasConcept C2988773926 @default.
- W3200235711 hasConcept C37736160 @default.
- W3200235711 hasConcept C39890363 @default.
- W3200235711 hasConcept C41008148 @default.
- W3200235711 hasConcept C50644808 @default.
- W3200235711 hasConceptScore W3200235711C101738243 @default.
- W3200235711 hasConceptScore W3200235711C108583219 @default.
- W3200235711 hasConceptScore W3200235711C124101348 @default.
- W3200235711 hasConceptScore W3200235711C153180895 @default.
- W3200235711 hasConceptScore W3200235711C154945302 @default.
- W3200235711 hasConceptScore W3200235711C163294075 @default.
- W3200235711 hasConceptScore W3200235711C2988773926 @default.
- W3200235711 hasConceptScore W3200235711C37736160 @default.
- W3200235711 hasConceptScore W3200235711C39890363 @default.
- W3200235711 hasConceptScore W3200235711C41008148 @default.
- W3200235711 hasConceptScore W3200235711C50644808 @default.
- W3200235711 hasLocation W32002357111 @default.
- W3200235711 hasOpenAccess W3200235711 @default.
- W3200235711 hasPrimaryLocation W32002357111 @default.
- W3200235711 hasRelatedWork W2901368259 @default.
- W3200235711 hasRelatedWork W2951578466 @default.
- W3200235711 hasRelatedWork W2998996837 @default.
- W3200235711 hasRelatedWork W3017161950 @default.
- W3200235711 hasRelatedWork W3024390022 @default.
- W3200235711 hasRelatedWork W3156291593 @default.
- W3200235711 hasRelatedWork W3164279787 @default.
- W3200235711 hasRelatedWork W4210395953 @default.
- W3200235711 hasRelatedWork W4313479464 @default.
- W3200235711 hasRelatedWork W4316035501 @default.
- W3200235711 isParatext "false" @default.
- W3200235711 isRetracted "false" @default.
- W3200235711 magId "3200235711" @default.
- W3200235711 workType "book-chapter" @default.