Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200251916> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3200251916 abstract "FINN is a framework developed by Xilinx Research Labs that compiles Deep Neural Network software descriptions into fast and scalable dataflow architectures for inference acceleration on FPGAs. The dataflow architectures are network dependent, sized according to the user-defined throughput requirements, and constrained by available resources on the user-specified FPGA board. Synthesising large neural network designs with a high degree of configurability leads to large build times, spanning from hours to days, to build an entire network. Thus, the first objective of this thesis is to explore and propose a modified FINN accelerator construction methodology that can substantially reduce the build times. The main idea behind our proposal is to reduce the granularity of the architecture to reduce the size of synthesis jobs and to enable logic reuse within and across neural network layers. Using this method, up to 12× speedup in High-Level Synthesis times and up to 2× speedup in end-to-end build times of accelerator networks are achieved. The second limitation that this work addresses relates to the performance scalability of FINN generated architectures. There are two modes of parallelism in FINN that currently provide performance scaling in convolution operations. The first factor, which modifies the number of Processing Elements (PEs), parallelises along the input channels of a convolutional layer and the second factor, that modifies the number of Single Instruction Multiple Data (SIMD) lanes present in each PE, parallelises along the number of output channels of the convolution. Computations are currently not parallelisable across the non-depth dimensions of images, i.e., the side containing pixels of images that faces the viewer. This limitation can restrict the achievable performance for networks that contain layers with large image dimensions and shallow depth dimension. The second part of this work leverages the fine-grained construction methodology to augment FINN performance scaling. The proposed approach introduces a generic FINN modification that enables pixel-level parallelism, i.e., multiple output pixels of a convolutional layer can be processed simultaneously by performing Multiple Matrix Vector (MMV) multiplications at the same time. Using this generic method, MMV number of pixels can be processed simultaneously, an MMV times throughput increase can be obtained at the cost of less than MMV × additional resources." @default.
- W3200251916 created "2021-09-27" @default.
- W3200251916 creator A5022575942 @default.
- W3200251916 creator A5073411679 @default.
- W3200251916 date "2021-01-01" @default.
- W3200251916 modified "2023-09-27" @default.
- W3200251916 title "Improving the usability and scalability of FINN, a DNN compiler for FPGAs" @default.
- W3200251916 cites W1005811612 @default.
- W3200251916 cites W1530262073 @default.
- W3200251916 cites W1686810756 @default.
- W3200251916 cites W2028166238 @default.
- W3200251916 cites W2076063813 @default.
- W3200251916 cites W2094756095 @default.
- W3200251916 cites W2172654076 @default.
- W3200251916 cites W2264905057 @default.
- W3200251916 cites W2284646714 @default.
- W3200251916 cites W2296509296 @default.
- W3200251916 cites W2588861206 @default.
- W3200251916 cites W2612445135 @default.
- W3200251916 cites W2755741562 @default.
- W3200251916 cites W2782546464 @default.
- W3200251916 cites W2809254203 @default.
- W3200251916 cites W2888088168 @default.
- W3200251916 cites W2964299589 @default.
- W3200251916 cites W3038988173 @default.
- W3200251916 cites W3129643976 @default.
- W3200251916 cites W3199040984 @default.
- W3200251916 hasPublicationYear "2021" @default.
- W3200251916 type Work @default.
- W3200251916 sameAs 3200251916 @default.
- W3200251916 citedByCount "0" @default.
- W3200251916 crossrefType "journal-article" @default.
- W3200251916 hasAuthorship W3200251916A5022575942 @default.
- W3200251916 hasAuthorship W3200251916A5073411679 @default.
- W3200251916 hasConcept C111919701 @default.
- W3200251916 hasConcept C118524514 @default.
- W3200251916 hasConcept C149635348 @default.
- W3200251916 hasConcept C150552126 @default.
- W3200251916 hasConcept C154945302 @default.
- W3200251916 hasConcept C169590947 @default.
- W3200251916 hasConcept C173608175 @default.
- W3200251916 hasConcept C199360897 @default.
- W3200251916 hasConcept C41008148 @default.
- W3200251916 hasConcept C42935608 @default.
- W3200251916 hasConcept C48044578 @default.
- W3200251916 hasConcept C68339613 @default.
- W3200251916 hasConcept C81363708 @default.
- W3200251916 hasConcept C96324660 @default.
- W3200251916 hasConceptScore W3200251916C111919701 @default.
- W3200251916 hasConceptScore W3200251916C118524514 @default.
- W3200251916 hasConceptScore W3200251916C149635348 @default.
- W3200251916 hasConceptScore W3200251916C150552126 @default.
- W3200251916 hasConceptScore W3200251916C154945302 @default.
- W3200251916 hasConceptScore W3200251916C169590947 @default.
- W3200251916 hasConceptScore W3200251916C173608175 @default.
- W3200251916 hasConceptScore W3200251916C199360897 @default.
- W3200251916 hasConceptScore W3200251916C41008148 @default.
- W3200251916 hasConceptScore W3200251916C42935608 @default.
- W3200251916 hasConceptScore W3200251916C48044578 @default.
- W3200251916 hasConceptScore W3200251916C68339613 @default.
- W3200251916 hasConceptScore W3200251916C81363708 @default.
- W3200251916 hasConceptScore W3200251916C96324660 @default.
- W3200251916 hasLocation W32002519161 @default.
- W3200251916 hasOpenAccess W3200251916 @default.
- W3200251916 hasPrimaryLocation W32002519161 @default.
- W3200251916 hasRelatedWork W2043607059 @default.
- W3200251916 hasRelatedWork W2068573906 @default.
- W3200251916 hasRelatedWork W2294023676 @default.
- W3200251916 hasRelatedWork W2526734599 @default.
- W3200251916 hasRelatedWork W2584785188 @default.
- W3200251916 hasRelatedWork W2588081531 @default.
- W3200251916 hasRelatedWork W2774445374 @default.
- W3200251916 hasRelatedWork W2787444967 @default.
- W3200251916 hasRelatedWork W2794377405 @default.
- W3200251916 hasRelatedWork W2794695316 @default.
- W3200251916 hasRelatedWork W2898612946 @default.
- W3200251916 hasRelatedWork W2908649606 @default.
- W3200251916 hasRelatedWork W3011650643 @default.
- W3200251916 hasRelatedWork W3032238182 @default.
- W3200251916 hasRelatedWork W3042416028 @default.
- W3200251916 hasRelatedWork W3092379737 @default.
- W3200251916 hasRelatedWork W3161204726 @default.
- W3200251916 hasRelatedWork W3188766293 @default.
- W3200251916 hasRelatedWork W1602922438 @default.
- W3200251916 hasRelatedWork W178759212 @default.
- W3200251916 isParatext "false" @default.
- W3200251916 isRetracted "false" @default.
- W3200251916 magId "3200251916" @default.
- W3200251916 workType "article" @default.