Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200252912> ?p ?o ?g. }
- W3200252912 endingPage "112691" @default.
- W3200252912 startingPage "112691" @default.
- W3200252912 abstract "Multi- and hyperspectral cameras on drones can be valuable tools in environmental monitoring. A significant shortcoming complicating their usage in quantitative remote sensing applications is insufficient robust radiometric calibration methods. In a direct reflectance transformation method, the drone is equipped with a camera and an irradiance sensor, allowing transformation of image pixel values to reflectance factors without ground reference data. This method requires the sensors to be calibrated with higher accuracy than what is usually required by the empirical line method (ELM), but consequently it offers benefits in robustness, ease of operation, and ability to be used on Beyond-Visual Line of Sight flights. The objective of this study was to develop and assess a drone-based workflow for direct reflectance transformation and implement it on our hyperspectral remote sensing system. A novel atmospheric correction method is also introduced, using two reference panels, but, unlike in the ELM, the correction is not directly affected by changes in the illumination. The sensor system consists of a hyperspectral camera (Rikola HSI, by Senop) and an onboard irradiance spectrometer (FGI AIRS), which were both given thorough radiometric calibrations. In laboratory tests and in a flight experiment, the FGI AIRS tilt-corrected irradiances had accuracy better than 1.9% at solar zenith angles up to 70°. The system's low-altitude reflectance factor accuracy was assessed in a flight experiment using reflectance reference panels, where the normalized root mean square errors (NRMSE) were less than ±2% for the light panels (25% and 50%) and less than ±4% for the dark panels (5% and 10%). In the high-altitude images, taken at 100–150 m altitude, the NRMSEs without atmospheric correction were within 1.4%–8.7% for VIS bands and 2.0%–18.5% for NIR bands. Significant atmospheric effects appeared already at 50 m flight altitude. The proposed atmospheric correction was found to be practical and it decreased the high-altitude NRMSEs to 1.3%–2.6% for VIS bands and to 2.3%–5.3% for NIR bands. Overall, the workflow was found to be efficient and to provide similar accuracies as the ELM, but providing operational advantages in such challenging scenarios as in forest monitoring, large-scale autonomous mapping tasks, and real-time applications. Tests in varying illumination conditions showed that the reflectance factors of the gravel and vegetation targets varied up to 8% between sunny and cloudy conditions due to reflectance anisotropy effects, while the direct reflectance workflow had better accuracy. This suggests that the varying illumination conditions have to be further accounted for in drone-based in quantitative remote sensing applications." @default.
- W3200252912 created "2021-09-27" @default.
- W3200252912 creator A5010833142 @default.
- W3200252912 creator A5011450440 @default.
- W3200252912 creator A5014491014 @default.
- W3200252912 creator A5018473742 @default.
- W3200252912 creator A5056513997 @default.
- W3200252912 creator A5062318076 @default.
- W3200252912 creator A5086480276 @default.
- W3200252912 date "2021-12-01" @default.
- W3200252912 modified "2023-10-16" @default.
- W3200252912 title "Direct reflectance transformation methodology for drone-based hyperspectral imaging" @default.
- W3200252912 cites W1983818779 @default.
- W3200252912 cites W1995248381 @default.
- W3200252912 cites W2004430076 @default.
- W3200252912 cites W2006588449 @default.
- W3200252912 cites W2011490804 @default.
- W3200252912 cites W2017859040 @default.
- W3200252912 cites W2025782027 @default.
- W3200252912 cites W2064219338 @default.
- W3200252912 cites W2086418613 @default.
- W3200252912 cites W2107307849 @default.
- W3200252912 cites W2114423066 @default.
- W3200252912 cites W2119346839 @default.
- W3200252912 cites W2125763679 @default.
- W3200252912 cites W2134852861 @default.
- W3200252912 cites W2144008549 @default.
- W3200252912 cites W2153958436 @default.
- W3200252912 cites W2178471458 @default.
- W3200252912 cites W2325878270 @default.
- W3200252912 cites W2507716131 @default.
- W3200252912 cites W2579656072 @default.
- W3200252912 cites W2591466624 @default.
- W3200252912 cites W2665869568 @default.
- W3200252912 cites W2736508163 @default.
- W3200252912 cites W2755622452 @default.
- W3200252912 cites W2768005555 @default.
- W3200252912 cites W2788506577 @default.
- W3200252912 cites W2801537173 @default.
- W3200252912 cites W2843415492 @default.
- W3200252912 cites W2889648359 @default.
- W3200252912 cites W2903788403 @default.
- W3200252912 cites W2912130932 @default.
- W3200252912 cites W2912198712 @default.
- W3200252912 cites W2913373042 @default.
- W3200252912 cites W2922510283 @default.
- W3200252912 cites W2964679297 @default.
- W3200252912 cites W2979531829 @default.
- W3200252912 cites W2980306779 @default.
- W3200252912 cites W2981982375 @default.
- W3200252912 cites W2982343528 @default.
- W3200252912 cites W2986119693 @default.
- W3200252912 cites W2989079554 @default.
- W3200252912 cites W2996373928 @default.
- W3200252912 cites W3014497710 @default.
- W3200252912 cites W3024674663 @default.
- W3200252912 cites W3093258085 @default.
- W3200252912 doi "https://doi.org/10.1016/j.rse.2021.112691" @default.
- W3200252912 hasPublicationYear "2021" @default.
- W3200252912 type Work @default.
- W3200252912 sameAs 3200252912 @default.
- W3200252912 citedByCount "17" @default.
- W3200252912 countsByYear W32002529122022 @default.
- W3200252912 countsByYear W32002529122023 @default.
- W3200252912 crossrefType "journal-article" @default.
- W3200252912 hasAuthorship W3200252912A5010833142 @default.
- W3200252912 hasAuthorship W3200252912A5011450440 @default.
- W3200252912 hasAuthorship W3200252912A5014491014 @default.
- W3200252912 hasAuthorship W3200252912A5018473742 @default.
- W3200252912 hasAuthorship W3200252912A5056513997 @default.
- W3200252912 hasAuthorship W3200252912A5062318076 @default.
- W3200252912 hasAuthorship W3200252912A5086480276 @default.
- W3200252912 hasBestOaLocation W32002529121 @default.
- W3200252912 hasConcept C104317684 @default.
- W3200252912 hasConcept C105795698 @default.
- W3200252912 hasConcept C117455697 @default.
- W3200252912 hasConcept C120665830 @default.
- W3200252912 hasConcept C121332964 @default.
- W3200252912 hasConcept C159078339 @default.
- W3200252912 hasConcept C165838908 @default.
- W3200252912 hasConcept C185592680 @default.
- W3200252912 hasConcept C205649164 @default.
- W3200252912 hasConcept C2778522173 @default.
- W3200252912 hasConcept C31972630 @default.
- W3200252912 hasConcept C33390570 @default.
- W3200252912 hasConcept C33923547 @default.
- W3200252912 hasConcept C39432304 @default.
- W3200252912 hasConcept C41008148 @default.
- W3200252912 hasConcept C46423501 @default.
- W3200252912 hasConcept C55493867 @default.
- W3200252912 hasConcept C62649853 @default.
- W3200252912 hasConcept C63479239 @default.
- W3200252912 hasConcept C76935873 @default.
- W3200252912 hasConceptScore W3200252912C104317684 @default.
- W3200252912 hasConceptScore W3200252912C105795698 @default.
- W3200252912 hasConceptScore W3200252912C117455697 @default.
- W3200252912 hasConceptScore W3200252912C120665830 @default.
- W3200252912 hasConceptScore W3200252912C121332964 @default.