Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200260324> ?p ?o ?g. }
- W3200260324 endingPage "102715" @default.
- W3200260324 startingPage "102715" @default.
- W3200260324 abstract "Many empirical software engineering studies have employed feature selection algorithms to exclude the irrelevant and redundant features from the datasets with the aim to improve prediction accuracy achieved with machine learning-based estimation models as well as their generalizability. However, little has been done to investigate how consistently these feature selection algorithms produce features/metrics across different training samples, which is an important point for the interpretation of the trained models. The interpretation of the models largely depends on the features of the analyzed datasets, so it is recommended to evaluate the potential of various feature selection algorithms in terms of how consistently they extract features from the employed datasets. In this study, we consider eight different feature selection algorithms to evaluate how consistently they select features across different folds of k-fold cross-validation as well as when small changes are made in the training data. To provide a stable and generalized conclusion, we investigate data from two different domains, i.e., six datasets from the domain of Software Development Effort Estimation (SDEE) and six datasets from the Software Fault Prediction (SFP) domain. Our results reveal that a feature selection algorithm could produce 20-100% inconsistent features with an SDEE dataset and 18.8-95.3% inconsistent features in the case of an SFP dataset. The analysis also reveals that it is not necessarily true that the most consistent feature selection algorithm results to be the most accurate one (i.e., leads to better prediction accuracy) in the case of SDEE datasets, while with SFP datasets, the analysis highlights that the most consistent feature selection algorithm also results to be the most accurate in predicting faults." @default.
- W3200260324 created "2021-09-27" @default.
- W3200260324 creator A5012888719 @default.
- W3200260324 creator A5085966858 @default.
- W3200260324 date "2022-01-01" @default.
- W3200260324 modified "2023-10-17" @default.
- W3200260324 title "Evaluating the impact of feature selection consistency in software prediction" @default.
- W3200260324 cites W1543715688 @default.
- W3200260324 cites W1982356933 @default.
- W3200260324 cites W1985460844 @default.
- W3200260324 cites W1994410397 @default.
- W3200260324 cites W2038894244 @default.
- W3200260324 cites W2062816266 @default.
- W3200260324 cites W2063499201 @default.
- W3200260324 cites W2075848956 @default.
- W3200260324 cites W2081749411 @default.
- W3200260324 cites W2097883090 @default.
- W3200260324 cites W2125791732 @default.
- W3200260324 cites W2131378644 @default.
- W3200260324 cites W2133990480 @default.
- W3200260324 cites W2158143121 @default.
- W3200260324 cites W2166773957 @default.
- W3200260324 cites W2507411464 @default.
- W3200260324 cites W2509487919 @default.
- W3200260324 cites W2624900765 @default.
- W3200260324 cites W2735266683 @default.
- W3200260324 cites W2767225265 @default.
- W3200260324 cites W2788085181 @default.
- W3200260324 cites W2792835675 @default.
- W3200260324 cites W2889763677 @default.
- W3200260324 cites W2963520355 @default.
- W3200260324 cites W3029383985 @default.
- W3200260324 cites W3098805155 @default.
- W3200260324 cites W3126900416 @default.
- W3200260324 doi "https://doi.org/10.1016/j.scico.2021.102715" @default.
- W3200260324 hasPublicationYear "2022" @default.
- W3200260324 type Work @default.
- W3200260324 sameAs 3200260324 @default.
- W3200260324 citedByCount "7" @default.
- W3200260324 countsByYear W32002603242022 @default.
- W3200260324 countsByYear W32002603242023 @default.
- W3200260324 crossrefType "journal-article" @default.
- W3200260324 hasAuthorship W3200260324A5012888719 @default.
- W3200260324 hasAuthorship W3200260324A5085966858 @default.
- W3200260324 hasConcept C105795698 @default.
- W3200260324 hasConcept C119857082 @default.
- W3200260324 hasConcept C124101348 @default.
- W3200260324 hasConcept C134306372 @default.
- W3200260324 hasConcept C138885662 @default.
- W3200260324 hasConcept C148483581 @default.
- W3200260324 hasConcept C153180895 @default.
- W3200260324 hasConcept C154945302 @default.
- W3200260324 hasConcept C199360897 @default.
- W3200260324 hasConcept C27158222 @default.
- W3200260324 hasConcept C2776401178 @default.
- W3200260324 hasConcept C2776436953 @default.
- W3200260324 hasConcept C2777904410 @default.
- W3200260324 hasConcept C33923547 @default.
- W3200260324 hasConcept C36503486 @default.
- W3200260324 hasConcept C41008148 @default.
- W3200260324 hasConcept C41895202 @default.
- W3200260324 hasConcept C45804977 @default.
- W3200260324 hasConcept C81917197 @default.
- W3200260324 hasConceptScore W3200260324C105795698 @default.
- W3200260324 hasConceptScore W3200260324C119857082 @default.
- W3200260324 hasConceptScore W3200260324C124101348 @default.
- W3200260324 hasConceptScore W3200260324C134306372 @default.
- W3200260324 hasConceptScore W3200260324C138885662 @default.
- W3200260324 hasConceptScore W3200260324C148483581 @default.
- W3200260324 hasConceptScore W3200260324C153180895 @default.
- W3200260324 hasConceptScore W3200260324C154945302 @default.
- W3200260324 hasConceptScore W3200260324C199360897 @default.
- W3200260324 hasConceptScore W3200260324C27158222 @default.
- W3200260324 hasConceptScore W3200260324C2776401178 @default.
- W3200260324 hasConceptScore W3200260324C2776436953 @default.
- W3200260324 hasConceptScore W3200260324C2777904410 @default.
- W3200260324 hasConceptScore W3200260324C33923547 @default.
- W3200260324 hasConceptScore W3200260324C36503486 @default.
- W3200260324 hasConceptScore W3200260324C41008148 @default.
- W3200260324 hasConceptScore W3200260324C41895202 @default.
- W3200260324 hasConceptScore W3200260324C45804977 @default.
- W3200260324 hasConceptScore W3200260324C81917197 @default.
- W3200260324 hasLocation W32002603241 @default.
- W3200260324 hasOpenAccess W3200260324 @default.
- W3200260324 hasPrimaryLocation W32002603241 @default.
- W3200260324 hasRelatedWork W2316780152 @default.
- W3200260324 hasRelatedWork W2374344280 @default.
- W3200260324 hasRelatedWork W2546942002 @default.
- W3200260324 hasRelatedWork W2970216048 @default.
- W3200260324 hasRelatedWork W3163334550 @default.
- W3200260324 hasRelatedWork W3200179079 @default.
- W3200260324 hasRelatedWork W4200511449 @default.
- W3200260324 hasRelatedWork W4283593236 @default.
- W3200260324 hasRelatedWork W4293525103 @default.
- W3200260324 hasRelatedWork W2345184372 @default.
- W3200260324 hasVolume "213" @default.
- W3200260324 isParatext "false" @default.
- W3200260324 isRetracted "false" @default.