Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200314056> ?p ?o ?g. }
- W3200314056 endingPage "6346" @default.
- W3200314056 startingPage "6346" @default.
- W3200314056 abstract "The role of 5G-IoT has become indispensable in smart applications and it plays a crucial part in e-health applications. E-health applications require intelligent schemes and architectures to overcome the security threats against the sensitive data of patients. The information in e-healthcare applications is stored in the cloud which is vulnerable to security attacks. However, with deep learning techniques, these attacks can be detected, which needs hybrid models. In this article, a new deep learning model (CNN-DMA) is proposed to detect malware attacks based on a classifier-Convolution Neural Network (CNN). The model uses three layers, i.e., Dense, Dropout, and Flatten. Batch sizes of 64, 20 epoch, and 25 classes are used to train the network. An input image of 32 × 32 × 1 is used for the initial convolutional layer. Results are retrieved on the Malimg dataset where 25 families of malware are fed as input and our model has detected is Alueron.gen!J malware. The proposed model CNN-DMA is 99% accurate and it is validated with state-of-the-art techniques." @default.
- W3200314056 created "2021-09-27" @default.
- W3200314056 creator A5004251248 @default.
- W3200314056 creator A5015138346 @default.
- W3200314056 creator A5032200555 @default.
- W3200314056 creator A5061367654 @default.
- W3200314056 creator A5063039746 @default.
- W3200314056 date "2021-09-23" @default.
- W3200314056 modified "2023-10-18" @default.
- W3200314056 title "An Efficient CNN-Based Deep Learning Model to Detect Malware Attacks (CNN-DMA) in 5G-IoT Healthcare Applications" @default.
- W3200314056 cites W1943579973 @default.
- W3200314056 cites W1973102675 @default.
- W3200314056 cites W1973138977 @default.
- W3200314056 cites W1984020445 @default.
- W3200314056 cites W1999798000 @default.
- W3200314056 cites W2007769540 @default.
- W3200314056 cites W2063138430 @default.
- W3200314056 cites W2111619626 @default.
- W3200314056 cites W2170577408 @default.
- W3200314056 cites W2220281005 @default.
- W3200314056 cites W2257979135 @default.
- W3200314056 cites W2399558526 @default.
- W3200314056 cites W2507235019 @default.
- W3200314056 cites W2524898498 @default.
- W3200314056 cites W2524991913 @default.
- W3200314056 cites W2552699189 @default.
- W3200314056 cites W2618530766 @default.
- W3200314056 cites W2732616350 @default.
- W3200314056 cites W2767547957 @default.
- W3200314056 cites W2768190712 @default.
- W3200314056 cites W2769507557 @default.
- W3200314056 cites W2771152181 @default.
- W3200314056 cites W2772805003 @default.
- W3200314056 cites W2772905584 @default.
- W3200314056 cites W2786070938 @default.
- W3200314056 cites W2791879367 @default.
- W3200314056 cites W2796994201 @default.
- W3200314056 cites W2899478246 @default.
- W3200314056 cites W2900616489 @default.
- W3200314056 cites W2902319104 @default.
- W3200314056 cites W2905953262 @default.
- W3200314056 cites W2941288225 @default.
- W3200314056 cites W2959517839 @default.
- W3200314056 cites W2963494103 @default.
- W3200314056 cites W2964203712 @default.
- W3200314056 cites W2991435551 @default.
- W3200314056 cites W2995630772 @default.
- W3200314056 cites W2996396177 @default.
- W3200314056 cites W2998720941 @default.
- W3200314056 cites W3037735315 @default.
- W3200314056 cites W3045149779 @default.
- W3200314056 cites W3046608724 @default.
- W3200314056 cites W3048860064 @default.
- W3200314056 cites W3099128725 @default.
- W3200314056 cites W3105108969 @default.
- W3200314056 cites W3140398459 @default.
- W3200314056 doi "https://doi.org/10.3390/s21196346" @default.
- W3200314056 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8512885" @default.
- W3200314056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34640666" @default.
- W3200314056 hasPublicationYear "2021" @default.
- W3200314056 type Work @default.
- W3200314056 sameAs 3200314056 @default.
- W3200314056 citedByCount "21" @default.
- W3200314056 countsByYear W32003140562021 @default.
- W3200314056 countsByYear W32003140562022 @default.
- W3200314056 countsByYear W32003140562023 @default.
- W3200314056 crossrefType "journal-article" @default.
- W3200314056 hasAuthorship W3200314056A5004251248 @default.
- W3200314056 hasAuthorship W3200314056A5015138346 @default.
- W3200314056 hasAuthorship W3200314056A5032200555 @default.
- W3200314056 hasAuthorship W3200314056A5061367654 @default.
- W3200314056 hasAuthorship W3200314056A5063039746 @default.
- W3200314056 hasBestOaLocation W32003140561 @default.
- W3200314056 hasConcept C108583219 @default.
- W3200314056 hasConcept C111919701 @default.
- W3200314056 hasConcept C119857082 @default.
- W3200314056 hasConcept C153180895 @default.
- W3200314056 hasConcept C154945302 @default.
- W3200314056 hasConcept C2776145597 @default.
- W3200314056 hasConcept C38652104 @default.
- W3200314056 hasConcept C41008148 @default.
- W3200314056 hasConcept C541664917 @default.
- W3200314056 hasConcept C79974875 @default.
- W3200314056 hasConcept C81363708 @default.
- W3200314056 hasConcept C95623464 @default.
- W3200314056 hasConceptScore W3200314056C108583219 @default.
- W3200314056 hasConceptScore W3200314056C111919701 @default.
- W3200314056 hasConceptScore W3200314056C119857082 @default.
- W3200314056 hasConceptScore W3200314056C153180895 @default.
- W3200314056 hasConceptScore W3200314056C154945302 @default.
- W3200314056 hasConceptScore W3200314056C2776145597 @default.
- W3200314056 hasConceptScore W3200314056C38652104 @default.
- W3200314056 hasConceptScore W3200314056C41008148 @default.
- W3200314056 hasConceptScore W3200314056C541664917 @default.
- W3200314056 hasConceptScore W3200314056C79974875 @default.
- W3200314056 hasConceptScore W3200314056C81363708 @default.
- W3200314056 hasConceptScore W3200314056C95623464 @default.
- W3200314056 hasIssue "19" @default.