Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200315724> ?p ?o ?g. }
- W3200315724 endingPage "2103382" @default.
- W3200315724 startingPage "2103382" @default.
- W3200315724 abstract "Blood analysis is crucial for early cancer screening and improving patient survival rates. However, developing an effective strategy for early cancer detection using high-throughput blood analysis is still challenging. Herein, a novel automatic super-hydrophobic platform is developed together with a deep learning (DL)-based label-free serum and surface-enhanced Raman scattering (SERS), along with an automatic high-throughput Raman spectrometer to build an effective point-of-care diagnosis system. A total of 695 high-quality serum SERS spectra are obtained from 203 healthy volunteers, 77 leukemia M5, 94 hepatitis B virus, and 321 breast cancer patients. Serum SERS signals from the normal (n = 183) and patient (n = 443) groups are used to assess the DL model, which classify them with a maximum accuracy of 100%. Furthermore, when SERS is combined with DL, it exhibits excellent diagnostic accuracy (98.6%) for the external held-out test set, indicating that this method can be used to develop a high throughput, rapid, and label-free tool for screening diseases." @default.
- W3200315724 created "2021-09-27" @default.
- W3200315724 creator A5003160716 @default.
- W3200315724 creator A5012902167 @default.
- W3200315724 creator A5015715002 @default.
- W3200315724 creator A5020819058 @default.
- W3200315724 creator A5028908054 @default.
- W3200315724 creator A5052534963 @default.
- W3200315724 creator A5063477936 @default.
- W3200315724 date "2021-09-21" @default.
- W3200315724 modified "2023-10-17" @default.
- W3200315724 title "High Throughput Blood Analysis Based on Deep Learning Algorithm and Self‐Positioning Super‐Hydrophobic SERS Platform for Non‐Invasive Multi‐Disease Screening" @default.
- W3200315724 cites W1119887047 @default.
- W3200315724 cites W1418296550 @default.
- W3200315724 cites W1729812787 @default.
- W3200315724 cites W1919722794 @default.
- W3200315724 cites W1969146098 @default.
- W3200315724 cites W2002568502 @default.
- W3200315724 cites W2009652807 @default.
- W3200315724 cites W2036379321 @default.
- W3200315724 cites W2050779943 @default.
- W3200315724 cites W2057007935 @default.
- W3200315724 cites W2083871382 @default.
- W3200315724 cites W2088164932 @default.
- W3200315724 cites W2089135124 @default.
- W3200315724 cites W2093913522 @default.
- W3200315724 cites W2106336939 @default.
- W3200315724 cites W2108727081 @default.
- W3200315724 cites W2146914242 @default.
- W3200315724 cites W2167897482 @default.
- W3200315724 cites W2168309066 @default.
- W3200315724 cites W2301954252 @default.
- W3200315724 cites W2320343184 @default.
- W3200315724 cites W2325815501 @default.
- W3200315724 cites W2339658711 @default.
- W3200315724 cites W2340757540 @default.
- W3200315724 cites W2464925659 @default.
- W3200315724 cites W2485931681 @default.
- W3200315724 cites W2531003645 @default.
- W3200315724 cites W2607409072 @default.
- W3200315724 cites W2618468622 @default.
- W3200315724 cites W2619175864 @default.
- W3200315724 cites W2790677434 @default.
- W3200315724 cites W2792307454 @default.
- W3200315724 cites W2797445881 @default.
- W3200315724 cites W2800938577 @default.
- W3200315724 cites W2805170694 @default.
- W3200315724 cites W2805677798 @default.
- W3200315724 cites W2888312739 @default.
- W3200315724 cites W2890041098 @default.
- W3200315724 cites W2894487198 @default.
- W3200315724 cites W2899540665 @default.
- W3200315724 cites W2904711643 @default.
- W3200315724 cites W2909472453 @default.
- W3200315724 cites W2914350542 @default.
- W3200315724 cites W2931962157 @default.
- W3200315724 cites W2946185430 @default.
- W3200315724 cites W2963974009 @default.
- W3200315724 cites W2969297501 @default.
- W3200315724 cites W2969521727 @default.
- W3200315724 cites W2971763914 @default.
- W3200315724 cites W2971814824 @default.
- W3200315724 cites W2977996597 @default.
- W3200315724 cites W2999277653 @default.
- W3200315724 cites W2999478533 @default.
- W3200315724 cites W2999873213 @default.
- W3200315724 cites W3002844387 @default.
- W3200315724 cites W3009468240 @default.
- W3200315724 cites W3015428699 @default.
- W3200315724 cites W3027297761 @default.
- W3200315724 cites W3029834215 @default.
- W3200315724 cites W3037882010 @default.
- W3200315724 cites W3083706977 @default.
- W3200315724 cites W3110953136 @default.
- W3200315724 cites W3137677285 @default.
- W3200315724 doi "https://doi.org/10.1002/adfm.202103382" @default.
- W3200315724 hasPublicationYear "2021" @default.
- W3200315724 type Work @default.
- W3200315724 sameAs 3200315724 @default.
- W3200315724 citedByCount "35" @default.
- W3200315724 countsByYear W32003157242022 @default.
- W3200315724 countsByYear W32003157242023 @default.
- W3200315724 crossrefType "journal-article" @default.
- W3200315724 hasAuthorship W3200315724A5003160716 @default.
- W3200315724 hasAuthorship W3200315724A5012902167 @default.
- W3200315724 hasAuthorship W3200315724A5015715002 @default.
- W3200315724 hasAuthorship W3200315724A5020819058 @default.
- W3200315724 hasAuthorship W3200315724A5028908054 @default.
- W3200315724 hasAuthorship W3200315724A5052534963 @default.
- W3200315724 hasAuthorship W3200315724A5063477936 @default.
- W3200315724 hasConcept C120665830 @default.
- W3200315724 hasConcept C121332964 @default.
- W3200315724 hasConcept C121608353 @default.
- W3200315724 hasConcept C126322002 @default.
- W3200315724 hasConcept C136229726 @default.
- W3200315724 hasConcept C142724271 @default.
- W3200315724 hasConcept C143998085 @default.
- W3200315724 hasConcept C157764524 @default.