Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200317450> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3200317450 abstract "Abstract The energy industry has been transformed considerably in the last years. Sustainable development of oil and gas reservoir has become a major driver for these energy companies, and strengthened the focus to maximize hydrocarbon extraction while minimizing the associated carbon footprint. The focus has been further on maximizing efficiency and waste reduction in order to enhance profitability of projects. Challenges still remain in terms of that the carbon emissions from oilfield operations, related to the production, disposal and utilization of water and hydrocarbons, may be significant and the objective of increasing production has to be traded off in many instances against the quest for reducing carbon emissions. The fourth industrial revolution has brought new opportunities for companies to enhance decision making in their upstream development and optimize their recovery potential while minimizing the carbon footprint and associated cost. In this work, we present a smart approach for optimizing recovery while minimizing the carbon footprint of a reservoir in terms of the associated development and production activities. We use an advanced nonlinear autoregressive neural network approach integrated with time-lapse electromagnetic monitoring data to forecast production and carbon emissions from the reservoir in real-time, under uncertainty. The artificial intelligence approach also allows to investigate a circular carbon approach, where the produced greenhouse gases are re-injected into the well, while at the same time adjusting water injection levels. This allows to forecast and analyze the impact of a circular development plan. We tested the AI framework on a synthetic reservoir encompassing a complex carbonate fracture system and well setup. The carbon emissions were forecasted in real-time based on the previous production rates and the defined injection levels. The forecasted carbon emissions were then integrated into an optimization technique, in order to adjust injection levels to minimize water cut and overall carbon emissions, while optimizing production rates. Results were promising and highlighted the potential significant reductions in carbon emissions for the studied synthetic reservoir case. Moreover, the deployment of deep electromagnetic surveys was proved particularly beneficial as a deep formation evaluation monitoring method for tracking the injected waterfront inside the reservoir and optimizing the sweep efficiency, while minimizing the inefficient use of water injection. Accordingly, such integrated AI approach has a twofold benefit: maximizing the hydrocarbon productivity, while minimizing the water consumption and associated carbon emissions. Such framework represents a paradigm shift in reservoir management and improved oil recovery operations under uncertainty. It proposes an innovative integrated methodology to reduce the carbon footprint and attain a real-time efficient circular development plan." @default.
- W3200317450 created "2021-09-27" @default.
- W3200317450 creator A5027583606 @default.
- W3200317450 creator A5042880520 @default.
- W3200317450 creator A5074033954 @default.
- W3200317450 creator A5084721199 @default.
- W3200317450 date "2021-09-15" @default.
- W3200317450 modified "2023-10-10" @default.
- W3200317450 title "An Innovative Artificial Intelligence Framework for Reducing Carbon Footprint in Reservoir Management" @default.
- W3200317450 cites W1984981661 @default.
- W3200317450 cites W2000901525 @default.
- W3200317450 cites W2902064445 @default.
- W3200317450 cites W2903269036 @default.
- W3200317450 cites W2918910653 @default.
- W3200317450 cites W2939553512 @default.
- W3200317450 cites W2993482125 @default.
- W3200317450 cites W2996599990 @default.
- W3200317450 cites W3089480847 @default.
- W3200317450 cites W3094153271 @default.
- W3200317450 cites W3095620809 @default.
- W3200317450 cites W3097038991 @default.
- W3200317450 cites W3126080786 @default.
- W3200317450 cites W3132469257 @default.
- W3200317450 doi "https://doi.org/10.2118/205856-ms" @default.
- W3200317450 hasPublicationYear "2021" @default.
- W3200317450 type Work @default.
- W3200317450 sameAs 3200317450 @default.
- W3200317450 citedByCount "2" @default.
- W3200317450 countsByYear W32003174502022 @default.
- W3200317450 crossrefType "proceedings-article" @default.
- W3200317450 hasAuthorship W3200317450A5027583606 @default.
- W3200317450 hasAuthorship W3200317450A5042880520 @default.
- W3200317450 hasAuthorship W3200317450A5074033954 @default.
- W3200317450 hasAuthorship W3200317450A5084721199 @default.
- W3200317450 hasConcept C10138342 @default.
- W3200317450 hasConcept C111368507 @default.
- W3200317450 hasConcept C127313418 @default.
- W3200317450 hasConcept C127413603 @default.
- W3200317450 hasConcept C129361004 @default.
- W3200317450 hasConcept C134560507 @default.
- W3200317450 hasConcept C139719470 @default.
- W3200317450 hasConcept C144133560 @default.
- W3200317450 hasConcept C162324750 @default.
- W3200317450 hasConcept C18762648 @default.
- W3200317450 hasConcept C21880701 @default.
- W3200317450 hasConcept C2778348673 @default.
- W3200317450 hasConcept C2779096232 @default.
- W3200317450 hasConcept C2780936489 @default.
- W3200317450 hasConcept C39432304 @default.
- W3200317450 hasConcept C41008148 @default.
- W3200317450 hasConcept C47737302 @default.
- W3200317450 hasConcept C548081761 @default.
- W3200317450 hasConcept C68189081 @default.
- W3200317450 hasConcept C78519656 @default.
- W3200317450 hasConcept C78762247 @default.
- W3200317450 hasConceptScore W3200317450C10138342 @default.
- W3200317450 hasConceptScore W3200317450C111368507 @default.
- W3200317450 hasConceptScore W3200317450C127313418 @default.
- W3200317450 hasConceptScore W3200317450C127413603 @default.
- W3200317450 hasConceptScore W3200317450C129361004 @default.
- W3200317450 hasConceptScore W3200317450C134560507 @default.
- W3200317450 hasConceptScore W3200317450C139719470 @default.
- W3200317450 hasConceptScore W3200317450C144133560 @default.
- W3200317450 hasConceptScore W3200317450C162324750 @default.
- W3200317450 hasConceptScore W3200317450C18762648 @default.
- W3200317450 hasConceptScore W3200317450C21880701 @default.
- W3200317450 hasConceptScore W3200317450C2778348673 @default.
- W3200317450 hasConceptScore W3200317450C2779096232 @default.
- W3200317450 hasConceptScore W3200317450C2780936489 @default.
- W3200317450 hasConceptScore W3200317450C39432304 @default.
- W3200317450 hasConceptScore W3200317450C41008148 @default.
- W3200317450 hasConceptScore W3200317450C47737302 @default.
- W3200317450 hasConceptScore W3200317450C548081761 @default.
- W3200317450 hasConceptScore W3200317450C68189081 @default.
- W3200317450 hasConceptScore W3200317450C78519656 @default.
- W3200317450 hasConceptScore W3200317450C78762247 @default.
- W3200317450 hasLocation W32003174501 @default.
- W3200317450 hasOpenAccess W3200317450 @default.
- W3200317450 hasPrimaryLocation W32003174501 @default.
- W3200317450 hasRelatedWork W2520123562 @default.
- W3200317450 hasRelatedWork W2982577922 @default.
- W3200317450 hasRelatedWork W3126462320 @default.
- W3200317450 hasRelatedWork W3139171050 @default.
- W3200317450 hasRelatedWork W3177776354 @default.
- W3200317450 hasRelatedWork W3216870065 @default.
- W3200317450 hasRelatedWork W4254774279 @default.
- W3200317450 hasRelatedWork W4280577310 @default.
- W3200317450 hasRelatedWork W4297499194 @default.
- W3200317450 hasRelatedWork W4306786578 @default.
- W3200317450 isParatext "false" @default.
- W3200317450 isRetracted "false" @default.
- W3200317450 magId "3200317450" @default.
- W3200317450 workType "article" @default.