Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200364303> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3200364303 abstract "With the development of the Internet of things (IoT), energy consumption of smart buildings has been widely concerned. The prediction of building energy consumption is of great significance for energy conservation and environmental protection as well as the construction of smart city. With the development of artificial intelligence, machine learning technology has been introduced to energy consumption prediction. In this study, multiple learning algorithms including Support Vector Regression (SVR), Artificial Neural Network (ANN), Random Forest (RF) are developed to perform energy consumption prediction. The most appropriate machine learning algorithm for energy consumption prediction has been investigated and found to be the random forest algorithm. Based on the developed machine learning models, studies on the sampling strategy for energy consumption prediction have been conducted. It is found that the variance of data has a significant effect on the prediction accuracy, and a better prediction result can be achieved by increasing the sampling density over the data with high variance. This result can be used to optimize the machine learning algorithm for building energy consumption prediction and improve the computational efficiency." @default.
- W3200364303 created "2021-09-27" @default.
- W3200364303 creator A5020408864 @default.
- W3200364303 creator A5026822143 @default.
- W3200364303 date "2021-08-11" @default.
- W3200364303 modified "2023-10-16" @default.
- W3200364303 title "Sampling Strategy Analysis of Machine Learning Models for Energy Consumption Prediction" @default.
- W3200364303 cites W2051607409 @default.
- W3200364303 cites W2563462907 @default.
- W3200364303 cites W2585502432 @default.
- W3200364303 cites W2754029504 @default.
- W3200364303 cites W2761875693 @default.
- W3200364303 cites W2912761558 @default.
- W3200364303 cites W3003400245 @default.
- W3200364303 cites W3035175754 @default.
- W3200364303 cites W3039156183 @default.
- W3200364303 cites W3084186033 @default.
- W3200364303 doi "https://doi.org/10.1109/sege52446.2021.9534987" @default.
- W3200364303 hasPublicationYear "2021" @default.
- W3200364303 type Work @default.
- W3200364303 sameAs 3200364303 @default.
- W3200364303 citedByCount "12" @default.
- W3200364303 countsByYear W32003643032021 @default.
- W3200364303 countsByYear W32003643032022 @default.
- W3200364303 countsByYear W32003643032023 @default.
- W3200364303 crossrefType "proceedings-article" @default.
- W3200364303 hasAuthorship W3200364303A5020408864 @default.
- W3200364303 hasAuthorship W3200364303A5026822143 @default.
- W3200364303 hasConcept C105795698 @default.
- W3200364303 hasConcept C106131492 @default.
- W3200364303 hasConcept C119599485 @default.
- W3200364303 hasConcept C119857082 @default.
- W3200364303 hasConcept C121955636 @default.
- W3200364303 hasConcept C12267149 @default.
- W3200364303 hasConcept C124101348 @default.
- W3200364303 hasConcept C127413603 @default.
- W3200364303 hasConcept C140779682 @default.
- W3200364303 hasConcept C144133560 @default.
- W3200364303 hasConcept C154945302 @default.
- W3200364303 hasConcept C169258074 @default.
- W3200364303 hasConcept C186370098 @default.
- W3200364303 hasConcept C196083921 @default.
- W3200364303 hasConcept C2742236 @default.
- W3200364303 hasConcept C2780165032 @default.
- W3200364303 hasConcept C31972630 @default.
- W3200364303 hasConcept C33923547 @default.
- W3200364303 hasConcept C41008148 @default.
- W3200364303 hasConcept C45804977 @default.
- W3200364303 hasConcept C50644808 @default.
- W3200364303 hasConcept C520301825 @default.
- W3200364303 hasConceptScore W3200364303C105795698 @default.
- W3200364303 hasConceptScore W3200364303C106131492 @default.
- W3200364303 hasConceptScore W3200364303C119599485 @default.
- W3200364303 hasConceptScore W3200364303C119857082 @default.
- W3200364303 hasConceptScore W3200364303C121955636 @default.
- W3200364303 hasConceptScore W3200364303C12267149 @default.
- W3200364303 hasConceptScore W3200364303C124101348 @default.
- W3200364303 hasConceptScore W3200364303C127413603 @default.
- W3200364303 hasConceptScore W3200364303C140779682 @default.
- W3200364303 hasConceptScore W3200364303C144133560 @default.
- W3200364303 hasConceptScore W3200364303C154945302 @default.
- W3200364303 hasConceptScore W3200364303C169258074 @default.
- W3200364303 hasConceptScore W3200364303C186370098 @default.
- W3200364303 hasConceptScore W3200364303C196083921 @default.
- W3200364303 hasConceptScore W3200364303C2742236 @default.
- W3200364303 hasConceptScore W3200364303C2780165032 @default.
- W3200364303 hasConceptScore W3200364303C31972630 @default.
- W3200364303 hasConceptScore W3200364303C33923547 @default.
- W3200364303 hasConceptScore W3200364303C41008148 @default.
- W3200364303 hasConceptScore W3200364303C45804977 @default.
- W3200364303 hasConceptScore W3200364303C50644808 @default.
- W3200364303 hasConceptScore W3200364303C520301825 @default.
- W3200364303 hasLocation W32003643031 @default.
- W3200364303 hasOpenAccess W3200364303 @default.
- W3200364303 hasPrimaryLocation W32003643031 @default.
- W3200364303 hasRelatedWork W2979979539 @default.
- W3200364303 hasRelatedWork W3004897296 @default.
- W3200364303 hasRelatedWork W3127425528 @default.
- W3200364303 hasRelatedWork W3143658565 @default.
- W3200364303 hasRelatedWork W3195168932 @default.
- W3200364303 hasRelatedWork W3200364303 @default.
- W3200364303 hasRelatedWork W4205958290 @default.
- W3200364303 hasRelatedWork W4283762323 @default.
- W3200364303 hasRelatedWork W4311106074 @default.
- W3200364303 hasRelatedWork W4320483443 @default.
- W3200364303 isParatext "false" @default.
- W3200364303 isRetracted "false" @default.
- W3200364303 magId "3200364303" @default.
- W3200364303 workType "article" @default.