Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200375827> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3200375827 endingPage "38" @default.
- W3200375827 startingPage "21" @default.
- W3200375827 abstract "At CRYPTO 2019, Gohr first proposes a deep learning based differential analysis on round-reduced Speck32/64. Then Yadav (et , al.) present a framework to construct the differential-ML (machine learning) distinguisher by combining the traditional differential distinguisher and the machine learning based differential distinguisher, which breaks the limit of the ML differential distinguisher on the number of attack rounds. However, the results obtained based on this method are not necessarily better than the results gained by traditional analysis. In this paper, we offer three novel greedy strategies ((M_1), (M_2) and (M_3)) to solve this problem. The strategy (M_1) provides better differential-ML distinguishers by considering all combinations of classical differential distinguishers and ML differential distinguishers. And the strategy (M_2) uses the best ML differential distinguishers to splice classical differential distinguishers forward, while the strategy (M_3) adopts the best classical differential distinguishers to splice ML differential distinguishers. As proof of works, we apply our methods to round-reduced Speck32/64, Speck48/72 and Speck64/96 and get some improved cryptanalysis results. For the construction of differential-ML distinguishers, we can reach 11-round Speck32/64, 14-round Speck48/72 and 18-round Speck64/96 with (2^{27}), (2^{45}), (2^{62}) data respectively." @default.
- W3200375827 created "2021-09-27" @default.
- W3200375827 creator A5054433786 @default.
- W3200375827 creator A5068633811 @default.
- W3200375827 date "2021-01-01" @default.
- W3200375827 modified "2023-09-30" @default.
- W3200375827 title "Improved Differential-ML Distinguisher: Machine Learning Based Generic Extension for Differential Analysis" @default.
- W3200375827 cites W1564684997 @default.
- W3200375827 cites W1629301835 @default.
- W3200375827 cites W1784406605 @default.
- W3200375827 cites W1883151075 @default.
- W3200375827 cites W1894646615 @default.
- W3200375827 cites W197228877 @default.
- W3200375827 cites W2087928947 @default.
- W3200375827 cites W2132271754 @default.
- W3200375827 cites W2425922656 @default.
- W3200375827 cites W2495518322 @default.
- W3200375827 cites W2584778576 @default.
- W3200375827 cites W2740336530 @default.
- W3200375827 cites W2765667708 @default.
- W3200375827 cites W2769206030 @default.
- W3200375827 cites W2885614120 @default.
- W3200375827 cites W2887280559 @default.
- W3200375827 cites W2949078646 @default.
- W3200375827 cites W2969001071 @default.
- W3200375827 cites W3034942609 @default.
- W3200375827 cites W369300053 @default.
- W3200375827 cites W380217570 @default.
- W3200375827 cites W4241247487 @default.
- W3200375827 cites W62005486 @default.
- W3200375827 doi "https://doi.org/10.1007/978-3-030-88052-1_2" @default.
- W3200375827 hasPublicationYear "2021" @default.
- W3200375827 type Work @default.
- W3200375827 sameAs 3200375827 @default.
- W3200375827 citedByCount "4" @default.
- W3200375827 countsByYear W32003758272022 @default.
- W3200375827 countsByYear W32003758272023 @default.
- W3200375827 crossrefType "book-chapter" @default.
- W3200375827 hasAuthorship W3200375827A5054433786 @default.
- W3200375827 hasAuthorship W3200375827A5068633811 @default.
- W3200375827 hasConcept C11413529 @default.
- W3200375827 hasConcept C121332964 @default.
- W3200375827 hasConcept C199360897 @default.
- W3200375827 hasConcept C2778029271 @default.
- W3200375827 hasConcept C33923547 @default.
- W3200375827 hasConcept C41008148 @default.
- W3200375827 hasConcept C93226319 @default.
- W3200375827 hasConcept C97355855 @default.
- W3200375827 hasConceptScore W3200375827C11413529 @default.
- W3200375827 hasConceptScore W3200375827C121332964 @default.
- W3200375827 hasConceptScore W3200375827C199360897 @default.
- W3200375827 hasConceptScore W3200375827C2778029271 @default.
- W3200375827 hasConceptScore W3200375827C33923547 @default.
- W3200375827 hasConceptScore W3200375827C41008148 @default.
- W3200375827 hasConceptScore W3200375827C93226319 @default.
- W3200375827 hasConceptScore W3200375827C97355855 @default.
- W3200375827 hasLocation W32003758271 @default.
- W3200375827 hasOpenAccess W3200375827 @default.
- W3200375827 hasPrimaryLocation W32003758271 @default.
- W3200375827 hasRelatedWork W1841979199 @default.
- W3200375827 hasRelatedWork W2033571057 @default.
- W3200375827 hasRelatedWork W2069998960 @default.
- W3200375827 hasRelatedWork W2320266418 @default.
- W3200375827 hasRelatedWork W2325022266 @default.
- W3200375827 hasRelatedWork W2325223994 @default.
- W3200375827 hasRelatedWork W2352495365 @default.
- W3200375827 hasRelatedWork W3080875783 @default.
- W3200375827 hasRelatedWork W4251067554 @default.
- W3200375827 hasRelatedWork W4312285938 @default.
- W3200375827 isParatext "false" @default.
- W3200375827 isRetracted "false" @default.
- W3200375827 magId "3200375827" @default.
- W3200375827 workType "book-chapter" @default.