Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200385069> ?p ?o ?g. }
- W3200385069 endingPage "150" @default.
- W3200385069 startingPage "138" @default.
- W3200385069 abstract "Mixture modeling is a major paradigm for clustering in statistics. In this article, we develop a new block-wise variable selection method for clustering by exploiting the latent states of the hidden Markov model on variable blocks or the Gaussian mixture model. The variable blocks are formed by depth-first-search on a dendrogram created based on the mutual information between any pair of variables. It is demonstrated that the latent states of the variable blocks together with the mixture model parameters can represent the original data effectively and much more compactly. We thus cluster the data using the latent states and select variables according to the relationship between the states and the clusters. As true class labels are unknown in the unsupervised setting, we first generate more refined clusters, namely, semi-clusters, for variable selection and then determine the final clusters based on the dimension reduced data. Experiments on simulated and real data show that the new method is highly competitive in terms of clustering accuracy compared with several widely used methods. Supplementary materials for this article are available online." @default.
- W3200385069 created "2021-09-27" @default.
- W3200385069 creator A5040865575 @default.
- W3200385069 creator A5043094331 @default.
- W3200385069 creator A5083460376 @default.
- W3200385069 date "2021-11-17" @default.
- W3200385069 modified "2023-09-24" @default.
- W3200385069 title "Block-Wise Variable Selection for Clustering Via Latent States of Mixture Models" @default.
- W3200385069 cites W109865423 @default.
- W3200385069 cites W1987971958 @default.
- W3200385069 cites W1996881001 @default.
- W3200385069 cites W2007222211 @default.
- W3200385069 cites W2007439698 @default.
- W3200385069 cites W2011832962 @default.
- W3200385069 cites W2017337590 @default.
- W3200385069 cites W2033403400 @default.
- W3200385069 cites W2033995502 @default.
- W3200385069 cites W2047109555 @default.
- W3200385069 cites W2048178552 @default.
- W3200385069 cites W2050476729 @default.
- W3200385069 cites W2051224630 @default.
- W3200385069 cites W2079623157 @default.
- W3200385069 cites W2088756548 @default.
- W3200385069 cites W2110065044 @default.
- W3200385069 cites W2112796928 @default.
- W3200385069 cites W2118570622 @default.
- W3200385069 cites W2119479037 @default.
- W3200385069 cites W2120000263 @default.
- W3200385069 cites W2122210511 @default.
- W3200385069 cites W2125310307 @default.
- W3200385069 cites W2128227827 @default.
- W3200385069 cites W2128873747 @default.
- W3200385069 cites W2134955300 @default.
- W3200385069 cites W2156247618 @default.
- W3200385069 cites W2273609658 @default.
- W3200385069 cites W2416999725 @default.
- W3200385069 cites W2506743715 @default.
- W3200385069 cites W2575552627 @default.
- W3200385069 cites W2726396617 @default.
- W3200385069 cites W2891915897 @default.
- W3200385069 cites W2946090488 @default.
- W3200385069 cites W2963400427 @default.
- W3200385069 cites W2963741623 @default.
- W3200385069 cites W3105178084 @default.
- W3200385069 cites W4247198512 @default.
- W3200385069 doi "https://doi.org/10.1080/10618600.2021.1982724" @default.
- W3200385069 hasPublicationYear "2021" @default.
- W3200385069 type Work @default.
- W3200385069 sameAs 3200385069 @default.
- W3200385069 citedByCount "3" @default.
- W3200385069 countsByYear W32003850692022 @default.
- W3200385069 countsByYear W32003850692023 @default.
- W3200385069 crossrefType "journal-article" @default.
- W3200385069 hasAuthorship W3200385069A5040865575 @default.
- W3200385069 hasAuthorship W3200385069A5043094331 @default.
- W3200385069 hasAuthorship W3200385069A5083460376 @default.
- W3200385069 hasConcept C112933361 @default.
- W3200385069 hasConcept C119857082 @default.
- W3200385069 hasConcept C124101348 @default.
- W3200385069 hasConcept C134306372 @default.
- W3200385069 hasConcept C148483581 @default.
- W3200385069 hasConcept C153180895 @default.
- W3200385069 hasConcept C154945302 @default.
- W3200385069 hasConcept C182365436 @default.
- W3200385069 hasConcept C184509293 @default.
- W3200385069 hasConcept C33923547 @default.
- W3200385069 hasConcept C41008148 @default.
- W3200385069 hasConcept C51167844 @default.
- W3200385069 hasConcept C61224824 @default.
- W3200385069 hasConcept C65965080 @default.
- W3200385069 hasConcept C70727504 @default.
- W3200385069 hasConcept C73555534 @default.
- W3200385069 hasConceptScore W3200385069C112933361 @default.
- W3200385069 hasConceptScore W3200385069C119857082 @default.
- W3200385069 hasConceptScore W3200385069C124101348 @default.
- W3200385069 hasConceptScore W3200385069C134306372 @default.
- W3200385069 hasConceptScore W3200385069C148483581 @default.
- W3200385069 hasConceptScore W3200385069C153180895 @default.
- W3200385069 hasConceptScore W3200385069C154945302 @default.
- W3200385069 hasConceptScore W3200385069C182365436 @default.
- W3200385069 hasConceptScore W3200385069C184509293 @default.
- W3200385069 hasConceptScore W3200385069C33923547 @default.
- W3200385069 hasConceptScore W3200385069C41008148 @default.
- W3200385069 hasConceptScore W3200385069C51167844 @default.
- W3200385069 hasConceptScore W3200385069C61224824 @default.
- W3200385069 hasConceptScore W3200385069C65965080 @default.
- W3200385069 hasConceptScore W3200385069C70727504 @default.
- W3200385069 hasConceptScore W3200385069C73555534 @default.
- W3200385069 hasFunder F4320306076 @default.
- W3200385069 hasIssue "1" @default.
- W3200385069 hasLocation W32003850691 @default.
- W3200385069 hasOpenAccess W3200385069 @default.
- W3200385069 hasPrimaryLocation W32003850691 @default.
- W3200385069 hasRelatedWork W1525474987 @default.
- W3200385069 hasRelatedWork W1591531715 @default.
- W3200385069 hasRelatedWork W1877246386 @default.
- W3200385069 hasRelatedWork W2102784002 @default.
- W3200385069 hasRelatedWork W2415853061 @default.