Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200386921> ?p ?o ?g. }
- W3200386921 endingPage "3613" @default.
- W3200386921 startingPage "3613" @default.
- W3200386921 abstract "It is critical to acquire the information of forest type at the tree species level due to its strong links with various quantitative and qualitative indicators in forest inventories. The efficiency of deep-learning classification models for high spatial resolution (HSR) remote sensing image has been demonstrated with the ongoing development of artificial intelligence technology. However, due to limited statistical separability and complicated circumstances, completely automatic and highly accurate forest type mapping at the tree species level remains a challenge. To deal with the problem, a novel deep fusion uNet model was developed to improve the performance of forest classification refined at the dominant tree species level by combining the beneficial phenological characteristics of the multi-temporal imagery and the powerful features of the deep uNet model. The proposed model was built on a two-branch deep fusion architecture with the deep Res-uNet model functioning as its backbone. Quantitative assessments of China’s Gaofen-2 (GF-2) HSR satellite data revealed that the suggested model delivered a competitive performance in the Wangyedian forest farm, with an overall classification accuracy (OA) of 93.30% and a Kappa coefficient of 0.9229. The studies also yielded good results in the mapping of plantation species such as the Chinese pine and the Larix principis." @default.
- W3200386921 created "2021-09-27" @default.
- W3200386921 creator A5017075514 @default.
- W3200386921 creator A5019633425 @default.
- W3200386921 creator A5034126342 @default.
- W3200386921 creator A5054491779 @default.
- W3200386921 creator A5054590057 @default.
- W3200386921 creator A5056366615 @default.
- W3200386921 creator A5071908888 @default.
- W3200386921 creator A5088404682 @default.
- W3200386921 date "2021-09-10" @default.
- W3200386921 modified "2023-10-06" @default.
- W3200386921 title "A Deep Fusion uNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery" @default.
- W3200386921 cites W1267165500 @default.
- W3200386921 cites W1778870018 @default.
- W3200386921 cites W1843514792 @default.
- W3200386921 cites W1978626680 @default.
- W3200386921 cites W1985700403 @default.
- W3200386921 cites W2004553299 @default.
- W3200386921 cites W2018732570 @default.
- W3200386921 cites W2027319213 @default.
- W3200386921 cites W2078180904 @default.
- W3200386921 cites W2119879130 @default.
- W3200386921 cites W2146126838 @default.
- W3200386921 cites W2151362686 @default.
- W3200386921 cites W2267317359 @default.
- W3200386921 cites W2588561483 @default.
- W3200386921 cites W2616755213 @default.
- W3200386921 cites W2740144340 @default.
- W3200386921 cites W2758333383 @default.
- W3200386921 cites W2770233088 @default.
- W3200386921 cites W2782522152 @default.
- W3200386921 cites W2808092904 @default.
- W3200386921 cites W2808436940 @default.
- W3200386921 cites W2891711602 @default.
- W3200386921 cites W2898152330 @default.
- W3200386921 cites W2910829991 @default.
- W3200386921 cites W2935706473 @default.
- W3200386921 cites W2946802127 @default.
- W3200386921 cites W2976120863 @default.
- W3200386921 cites W3014120959 @default.
- W3200386921 cites W3024671041 @default.
- W3200386921 cites W3037330632 @default.
- W3200386921 cites W3097207090 @default.
- W3200386921 cites W3108514858 @default.
- W3200386921 cites W3110459943 @default.
- W3200386921 doi "https://doi.org/10.3390/rs13183613" @default.
- W3200386921 hasPublicationYear "2021" @default.
- W3200386921 type Work @default.
- W3200386921 sameAs 3200386921 @default.
- W3200386921 citedByCount "7" @default.
- W3200386921 countsByYear W32003869212022 @default.
- W3200386921 countsByYear W32003869212023 @default.
- W3200386921 crossrefType "journal-article" @default.
- W3200386921 hasAuthorship W3200386921A5017075514 @default.
- W3200386921 hasAuthorship W3200386921A5019633425 @default.
- W3200386921 hasAuthorship W3200386921A5034126342 @default.
- W3200386921 hasAuthorship W3200386921A5054491779 @default.
- W3200386921 hasAuthorship W3200386921A5054590057 @default.
- W3200386921 hasAuthorship W3200386921A5056366615 @default.
- W3200386921 hasAuthorship W3200386921A5071908888 @default.
- W3200386921 hasAuthorship W3200386921A5088404682 @default.
- W3200386921 hasBestOaLocation W32003869211 @default.
- W3200386921 hasConcept C108583219 @default.
- W3200386921 hasConcept C113174947 @default.
- W3200386921 hasConcept C127413603 @default.
- W3200386921 hasConcept C134306372 @default.
- W3200386921 hasConcept C138885662 @default.
- W3200386921 hasConcept C146978453 @default.
- W3200386921 hasConcept C154945302 @default.
- W3200386921 hasConcept C158525013 @default.
- W3200386921 hasConcept C169258074 @default.
- W3200386921 hasConcept C19269812 @default.
- W3200386921 hasConcept C205649164 @default.
- W3200386921 hasConcept C2778102629 @default.
- W3200386921 hasConcept C33923547 @default.
- W3200386921 hasConcept C39432304 @default.
- W3200386921 hasConcept C41008148 @default.
- W3200386921 hasConcept C41895202 @default.
- W3200386921 hasConcept C62649853 @default.
- W3200386921 hasConceptScore W3200386921C108583219 @default.
- W3200386921 hasConceptScore W3200386921C113174947 @default.
- W3200386921 hasConceptScore W3200386921C127413603 @default.
- W3200386921 hasConceptScore W3200386921C134306372 @default.
- W3200386921 hasConceptScore W3200386921C138885662 @default.
- W3200386921 hasConceptScore W3200386921C146978453 @default.
- W3200386921 hasConceptScore W3200386921C154945302 @default.
- W3200386921 hasConceptScore W3200386921C158525013 @default.
- W3200386921 hasConceptScore W3200386921C169258074 @default.
- W3200386921 hasConceptScore W3200386921C19269812 @default.
- W3200386921 hasConceptScore W3200386921C205649164 @default.
- W3200386921 hasConceptScore W3200386921C2778102629 @default.
- W3200386921 hasConceptScore W3200386921C33923547 @default.
- W3200386921 hasConceptScore W3200386921C39432304 @default.
- W3200386921 hasConceptScore W3200386921C41008148 @default.
- W3200386921 hasConceptScore W3200386921C41895202 @default.
- W3200386921 hasConceptScore W3200386921C62649853 @default.
- W3200386921 hasIssue "18" @default.