Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200389295> ?p ?o ?g. }
- W3200389295 abstract "The improvement of hardware for the acquisition and processing of electroencephalography (EEG) has made its portability become a reality. This allows for studies to be carried outside lab settings, as well as many commercial applications. As recordings are done over extended periods, these devices generate large volumes of data, mainly if the neuronal activity is recorded through multiple channels. Machine learning (ML) techniques allow to effectively analyse and use this data for a wide range of applications. However the portability of these techniques can be challenging. In this article, we set out to review over 40 relevant articles where ML techniques in a diverse set of EEG applications that have successfully been incorporated into portable systems." @default.
- W3200389295 created "2021-09-27" @default.
- W3200389295 creator A5006193695 @default.
- W3200389295 creator A5027525633 @default.
- W3200389295 creator A5040712397 @default.
- W3200389295 date "2021-07-18" @default.
- W3200389295 modified "2023-09-25" @default.
- W3200389295 title "On-Chip Machine Learning for Portable Systems: Application to Electroencephalography-based Brain-Computer Interfaces" @default.
- W3200389295 cites W1497347356 @default.
- W3200389295 cites W1904701389 @default.
- W3200389295 cites W1906184128 @default.
- W3200389295 cites W2003729369 @default.
- W3200389295 cites W2018642663 @default.
- W3200389295 cites W2042682017 @default.
- W3200389295 cites W2078791923 @default.
- W3200389295 cites W2086659790 @default.
- W3200389295 cites W2122982148 @default.
- W3200389295 cites W2155622368 @default.
- W3200389295 cites W2169766445 @default.
- W3200389295 cites W2185491959 @default.
- W3200389295 cites W2188648459 @default.
- W3200389295 cites W2245090287 @default.
- W3200389295 cites W2296399887 @default.
- W3200389295 cites W2310038796 @default.
- W3200389295 cites W2517777200 @default.
- W3200389295 cites W2581784430 @default.
- W3200389295 cites W2732754794 @default.
- W3200389295 cites W2760008660 @default.
- W3200389295 cites W2768956845 @default.
- W3200389295 cites W2792181492 @default.
- W3200389295 cites W2794712872 @default.
- W3200389295 cites W2803360403 @default.
- W3200389295 cites W2806033632 @default.
- W3200389295 cites W2890929258 @default.
- W3200389295 cites W2890956351 @default.
- W3200389295 cites W2891809426 @default.
- W3200389295 cites W2897706884 @default.
- W3200389295 cites W2905451100 @default.
- W3200389295 cites W2905686860 @default.
- W3200389295 cites W2905729334 @default.
- W3200389295 cites W2914588126 @default.
- W3200389295 cites W2941470771 @default.
- W3200389295 cites W2942968344 @default.
- W3200389295 cites W2942977740 @default.
- W3200389295 cites W2945280224 @default.
- W3200389295 cites W2945763771 @default.
- W3200389295 cites W2953166525 @default.
- W3200389295 cites W2959807905 @default.
- W3200389295 cites W2966038323 @default.
- W3200389295 cites W2981185037 @default.
- W3200389295 cites W2983188826 @default.
- W3200389295 cites W2992380016 @default.
- W3200389295 cites W2992806896 @default.
- W3200389295 cites W2993495669 @default.
- W3200389295 cites W2993516307 @default.
- W3200389295 cites W2996014949 @default.
- W3200389295 cites W3007014740 @default.
- W3200389295 cites W3009360413 @default.
- W3200389295 cites W3010772276 @default.
- W3200389295 cites W3033564916 @default.
- W3200389295 cites W3038359063 @default.
- W3200389295 cites W3040049121 @default.
- W3200389295 cites W3045520755 @default.
- W3200389295 cites W3046342815 @default.
- W3200389295 cites W3089526972 @default.
- W3200389295 cites W3089578393 @default.
- W3200389295 cites W3090295074 @default.
- W3200389295 cites W3090519764 @default.
- W3200389295 cites W3090694527 @default.
- W3200389295 cites W3090817858 @default.
- W3200389295 cites W3091860120 @default.
- W3200389295 cites W3100002045 @default.
- W3200389295 cites W3100455055 @default.
- W3200389295 cites W3109706177 @default.
- W3200389295 doi "https://doi.org/10.1109/ijcnn52387.2021.9533413" @default.
- W3200389295 hasPublicationYear "2021" @default.
- W3200389295 type Work @default.
- W3200389295 sameAs 3200389295 @default.
- W3200389295 citedByCount "1" @default.
- W3200389295 countsByYear W32003892952023 @default.
- W3200389295 crossrefType "proceedings-article" @default.
- W3200389295 hasAuthorship W3200389295A5006193695 @default.
- W3200389295 hasAuthorship W3200389295A5027525633 @default.
- W3200389295 hasAuthorship W3200389295A5040712397 @default.
- W3200389295 hasConcept C107457646 @default.
- W3200389295 hasConcept C111919701 @default.
- W3200389295 hasConcept C113843644 @default.
- W3200389295 hasConcept C129307140 @default.
- W3200389295 hasConcept C149635348 @default.
- W3200389295 hasConcept C154945302 @default.
- W3200389295 hasConcept C157915830 @default.
- W3200389295 hasConcept C169760540 @default.
- W3200389295 hasConcept C173201364 @default.
- W3200389295 hasConcept C177264268 @default.
- W3200389295 hasConcept C199360897 @default.
- W3200389295 hasConcept C41008148 @default.
- W3200389295 hasConcept C522805319 @default.
- W3200389295 hasConcept C63000827 @default.
- W3200389295 hasConcept C86803240 @default.
- W3200389295 hasConcept C9390403 @default.