Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200413364> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3200413364 endingPage "138351" @default.
- W3200413364 startingPage "138345" @default.
- W3200413364 abstract "Cybersecurity is the biggest threat in the world. More and more people are used to storing personal data on a computer and transmitting it through the Internet. Cybersecurity will be an important issue that everyone continues to pay attention to. One of the most serious problems recently is the prevalence of ransomware, especially crypto-ransomware. Unlike ordinary attacks, crypto-ransomware does not control the victim’s computer and steal important data. It focuses on encrypting all data and asking victims to provide ransom to decrypt the data. Currently, many studies focus on various aspects of ransomware, including file-based, behavior-based, and network-based ransomware detection method, and use machine learning to build detection models. In addition to the above research, we found that attackers have begun to develop a new method to encrypt data. It will not only increase the speed of data encryption but also reduce the detection rate in the existing detection system. In any case, we are still facing ransomware dangers, as it is hard to recognize and forestall ransomware executing obscure malicious programs. In other words, user data will be sabotaged as soon as the computer cannot detect the ransomware. To solve the problem, detecting files instead of detecting the executable program might be helpful to establish the backup system immediately before ransomware encrypts all of the user files. We analyze the 22 formats of the encrypted files, extract the specific features and use the Support Vector Machine to distinguish between encrypted and unencrypted files. Conducted analysis results confirm that our method has high performance and can maintain the detection rate of 85.17% (where the detection rate of SVM kernel Trick (Poly) exceeds 92%)." @default.
- W3200413364 created "2021-09-27" @default.
- W3200413364 creator A5010616586 @default.
- W3200413364 creator A5035074760 @default.
- W3200413364 creator A5045645055 @default.
- W3200413364 creator A5060321882 @default.
- W3200413364 creator A5068613591 @default.
- W3200413364 date "2021-01-01" @default.
- W3200413364 modified "2023-10-12" @default.
- W3200413364 title "Enhancing File Entropy Analysis to Improve Machine Learning Detection Rate of Ransomware" @default.
- W3200413364 cites W2793829161 @default.
- W3200413364 cites W2794482868 @default.
- W3200413364 cites W2799908179 @default.
- W3200413364 cites W2800509541 @default.
- W3200413364 cites W2887954984 @default.
- W3200413364 cites W2902391397 @default.
- W3200413364 cites W2902612505 @default.
- W3200413364 cites W2911731407 @default.
- W3200413364 cites W2941650181 @default.
- W3200413364 cites W2960404346 @default.
- W3200413364 cites W2962912862 @default.
- W3200413364 cites W2982337928 @default.
- W3200413364 cites W2998708406 @default.
- W3200413364 cites W3004344696 @default.
- W3200413364 cites W3005124797 @default.
- W3200413364 cites W3007286727 @default.
- W3200413364 cites W3082741490 @default.
- W3200413364 cites W3091730061 @default.
- W3200413364 doi "https://doi.org/10.1109/access.2021.3114148" @default.
- W3200413364 hasPublicationYear "2021" @default.
- W3200413364 type Work @default.
- W3200413364 sameAs 3200413364 @default.
- W3200413364 citedByCount "4" @default.
- W3200413364 countsByYear W32004133642023 @default.
- W3200413364 crossrefType "journal-article" @default.
- W3200413364 hasAuthorship W3200413364A5010616586 @default.
- W3200413364 hasAuthorship W3200413364A5035074760 @default.
- W3200413364 hasAuthorship W3200413364A5045645055 @default.
- W3200413364 hasAuthorship W3200413364A5060321882 @default.
- W3200413364 hasAuthorship W3200413364A5068613591 @default.
- W3200413364 hasBestOaLocation W32004133641 @default.
- W3200413364 hasConcept C111919701 @default.
- W3200413364 hasConcept C148730421 @default.
- W3200413364 hasConcept C2777667771 @default.
- W3200413364 hasConcept C2780945871 @default.
- W3200413364 hasConcept C38652104 @default.
- W3200413364 hasConcept C41008148 @default.
- W3200413364 hasConcept C541664917 @default.
- W3200413364 hasConceptScore W3200413364C111919701 @default.
- W3200413364 hasConceptScore W3200413364C148730421 @default.
- W3200413364 hasConceptScore W3200413364C2777667771 @default.
- W3200413364 hasConceptScore W3200413364C2780945871 @default.
- W3200413364 hasConceptScore W3200413364C38652104 @default.
- W3200413364 hasConceptScore W3200413364C41008148 @default.
- W3200413364 hasConceptScore W3200413364C541664917 @default.
- W3200413364 hasFunder F4320322795 @default.
- W3200413364 hasLocation W32004133641 @default.
- W3200413364 hasLocation W32004133642 @default.
- W3200413364 hasOpenAccess W3200413364 @default.
- W3200413364 hasPrimaryLocation W32004133641 @default.
- W3200413364 hasRelatedWork W2922354075 @default.
- W3200413364 hasRelatedWork W2955195711 @default.
- W3200413364 hasRelatedWork W2964829536 @default.
- W3200413364 hasRelatedWork W2964936987 @default.
- W3200413364 hasRelatedWork W3076507384 @default.
- W3200413364 hasRelatedWork W3201228709 @default.
- W3200413364 hasRelatedWork W3202245533 @default.
- W3200413364 hasRelatedWork W4224941017 @default.
- W3200413364 hasRelatedWork W4253977752 @default.
- W3200413364 hasRelatedWork W4366249425 @default.
- W3200413364 hasVolume "9" @default.
- W3200413364 isParatext "false" @default.
- W3200413364 isRetracted "false" @default.
- W3200413364 magId "3200413364" @default.
- W3200413364 workType "article" @default.