Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200428569> ?p ?o ?g. }
- W3200428569 abstract "The drug response prediction problem arises from personalized medicine and drug discovery. Deep neural networks have been applied to the multi-omics data being available for over 1000 cancer cell lines and tissues for better drug response prediction. We summarize and examine state-of-the-art deep learning methods that have been published recently. Although significant progresses have been made in deep learning approach in drug response prediction, deep learning methods show their weakness for predicting the response of a drug that does not appear in the training dataset. In particular, all the five evaluated deep learning methods performed worst than the similarity-regularized matrix factorization (SRMF) method in our drug blind test. We outline the challenges in applying deep learning approach to drug response prediction and suggest unique opportunities for deep learning integrated with established bioinformatics analyses to overcome some of these challenges." @default.
- W3200428569 created "2021-09-27" @default.
- W3200428569 creator A5012300835 @default.
- W3200428569 creator A5043420671 @default.
- W3200428569 date "2021-09-15" @default.
- W3200428569 modified "2023-10-18" @default.
- W3200428569 title "How much can deep learning improve prediction of the responses to drugs in cancer cell lines?" @default.
- W3200428569 cites W1536902151 @default.
- W3200428569 cites W1975147762 @default.
- W3200428569 cites W1988037271 @default.
- W3200428569 cites W1989129581 @default.
- W3200428569 cites W2043398720 @default.
- W3200428569 cites W2099297532 @default.
- W3200428569 cites W2108933868 @default.
- W3200428569 cites W2125789330 @default.
- W3200428569 cites W2129860849 @default.
- W3200428569 cites W2197241765 @default.
- W3200428569 cites W2293825098 @default.
- W3200428569 cites W2432718434 @default.
- W3200428569 cites W2513486311 @default.
- W3200428569 cites W2735647642 @default.
- W3200428569 cites W2742007096 @default.
- W3200428569 cites W2773309042 @default.
- W3200428569 cites W2775061087 @default.
- W3200428569 cites W2777794149 @default.
- W3200428569 cites W2792791113 @default.
- W3200428569 cites W2800484633 @default.
- W3200428569 cites W2807463161 @default.
- W3200428569 cites W2808199968 @default.
- W3200428569 cites W2887685819 @default.
- W3200428569 cites W2917774954 @default.
- W3200428569 cites W2921321912 @default.
- W3200428569 cites W2921591500 @default.
- W3200428569 cites W2944974555 @default.
- W3200428569 cites W2948035163 @default.
- W3200428569 cites W2949159188 @default.
- W3200428569 cites W2950063908 @default.
- W3200428569 cites W2955502047 @default.
- W3200428569 cites W2965750004 @default.
- W3200428569 cites W3000373012 @default.
- W3200428569 cites W3000469142 @default.
- W3200428569 cites W3094540299 @default.
- W3200428569 cites W3095377337 @default.
- W3200428569 cites W3116278528 @default.
- W3200428569 cites W3124481204 @default.
- W3200428569 cites W3130891725 @default.
- W3200428569 cites W3137482466 @default.
- W3200428569 cites W3148071990 @default.
- W3200428569 cites W3200762293 @default.
- W3200428569 doi "https://doi.org/10.1093/bib/bbab378" @default.
- W3200428569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34529029" @default.
- W3200428569 hasPublicationYear "2021" @default.
- W3200428569 type Work @default.
- W3200428569 sameAs 3200428569 @default.
- W3200428569 citedByCount "10" @default.
- W3200428569 countsByYear W32004285692022 @default.
- W3200428569 countsByYear W32004285692023 @default.
- W3200428569 crossrefType "journal-article" @default.
- W3200428569 hasAuthorship W3200428569A5012300835 @default.
- W3200428569 hasAuthorship W3200428569A5043420671 @default.
- W3200428569 hasConcept C108583219 @default.
- W3200428569 hasConcept C119857082 @default.
- W3200428569 hasConcept C154945302 @default.
- W3200428569 hasConcept C2780035454 @default.
- W3200428569 hasConcept C2984842247 @default.
- W3200428569 hasConcept C2994119904 @default.
- W3200428569 hasConcept C32220436 @default.
- W3200428569 hasConcept C41008148 @default.
- W3200428569 hasConcept C50644808 @default.
- W3200428569 hasConcept C60644358 @default.
- W3200428569 hasConcept C71924100 @default.
- W3200428569 hasConcept C74187038 @default.
- W3200428569 hasConcept C86803240 @default.
- W3200428569 hasConcept C98274493 @default.
- W3200428569 hasConceptScore W3200428569C108583219 @default.
- W3200428569 hasConceptScore W3200428569C119857082 @default.
- W3200428569 hasConceptScore W3200428569C154945302 @default.
- W3200428569 hasConceptScore W3200428569C2780035454 @default.
- W3200428569 hasConceptScore W3200428569C2984842247 @default.
- W3200428569 hasConceptScore W3200428569C2994119904 @default.
- W3200428569 hasConceptScore W3200428569C32220436 @default.
- W3200428569 hasConceptScore W3200428569C41008148 @default.
- W3200428569 hasConceptScore W3200428569C50644808 @default.
- W3200428569 hasConceptScore W3200428569C60644358 @default.
- W3200428569 hasConceptScore W3200428569C71924100 @default.
- W3200428569 hasConceptScore W3200428569C74187038 @default.
- W3200428569 hasConceptScore W3200428569C86803240 @default.
- W3200428569 hasConceptScore W3200428569C98274493 @default.
- W3200428569 hasFunder F4320320751 @default.
- W3200428569 hasIssue "1" @default.
- W3200428569 hasLocation W32004285691 @default.
- W3200428569 hasLocation W32004285692 @default.
- W3200428569 hasOpenAccess W3200428569 @default.
- W3200428569 hasPrimaryLocation W32004285691 @default.
- W3200428569 hasRelatedWork W1508732282 @default.
- W3200428569 hasRelatedWork W2068142083 @default.
- W3200428569 hasRelatedWork W2159063798 @default.
- W3200428569 hasRelatedWork W2758791195 @default.
- W3200428569 hasRelatedWork W2799384463 @default.
- W3200428569 hasRelatedWork W3000197790 @default.