Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200490003> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3200490003 endingPage "2136" @default.
- W3200490003 startingPage "2133" @default.
- W3200490003 abstract "NanomedicineVol. 16, No. 24 EditorialRole of molecular simulation in the future of nanomedicineReza Maleki, Sima Rezvantalab & Mohammad-Ali ShahbaziReza Maleki **Author for correspondence: E-mail Address: rezamaleki96@gmail.comhttps://orcid.org/0000-0002-5169-5848Computational Biology & Chemistry Group, Universal Scientific Education & Research Network, Tehran, IranSearch for more papers by this author, Sima RezvantalabRenewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, Urmia, 57166 419, IranSearch for more papers by this author & Mohammad-Ali Shahbazi*Author for correspondence: E-mail Address: m.a.shahbazi@helsinki.fiDrug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, FinlandSearch for more papers by this authorPublished Online:14 Sep 2021https://doi.org/10.2217/nnm-2021-0120AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: computational biologycomputational studyin silico studymolecular dynamicsmolecular simulationnanomedicineReferences1. Moghimi SM, Simberg D, Anchordoquy TJ. Tuning the engines of nanomedicine. Mol. Ther. 28(3), 693–694 (2020).Crossref, Medline, CAS, Google Scholar2. Bissaro M, Sturlese M, Moro S. The rise of molecular simulations in fragment-based drug design (FBDD): an overview. Drug Discov. Today 25(9), 1693–1701 (2020).Crossref, Medline, CAS, Google Scholar3. Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron 99(6), 1129–1143 (2018).Crossref, Medline, CAS, Google Scholar4. De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 59(9), 4035–4061 (2016).Crossref, Medline, Google Scholar5. Hernández-Rodríguez M, Rosales-Hernández MC, Mendieta-Wejebe JE, Martínez-Archundia M, Correa Basurto J. Current tools and methods in molecular dynamics (MD) simulations for drug design. Curr. Med. Chem. 23(34), 3909–3924 (2016).Crossref, Medline, CAS, Google Scholar6. Joshi SY, Deshmukh SA. A review of advancements in coarse-grained molecular dynamics simulations. Mol. Simul. 47(10–11), 786–803 (2020).Crossref, Google Scholar7. Sen S, Han Y, Rehak P, Vuković L, Král P. Computational studies of micellar and nanoparticle nanomedicines. Chem. Soc. Rev. 47(11), 3849–3860 (2018).Crossref, Medline, CAS, Google Scholar8. Pearson RM, Sen S, Hsu HJ et al. Tuning the selectivity of dendron micelles through variations of the poly(ethylene glycol) corona. ACS Nano 10(7), 6905–6914 (2016).Crossref, Medline, CAS, Google Scholar9. Somiya M, Kuroda SI. Virus-mimicking nanocarriers for the intracellular delivery of therapeutic biomolecules. Nanomedicine (Lond.) 15(12), 1163–1165 (2020).Link, CAS, Google Scholar10. Zhang L, Tang R, Bai S et al. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations. J. Phys. Chem. B 117(18), 5411–5421 (2013).Crossref, Medline, CAS, Google Scholar11. Kashkooli FM, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today 36, 101057 (2021).Crossref, Google Scholar12. Chakraborty R, Dey S, Sil P et al. Conformational distortion in a fibril-forming oligomer arrests alpha-synuclein fibrillation and minimizes its toxic effects. Commun. Biol. 4, 518 (2021).Crossref, Medline, CAS, Google Scholar13. Zhang T, Zhu G, Lu B, Qian Z, Peng Q. Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Med. Res. Rev. 41(3), 1835–1850 (2021).Crossref, CAS, Google Scholar14. Lee H. Effects of nanoparticle electrostatics and protein–protein interactions on corona formation: conformation and hydrodynamics. Small 16(10), 1906598 (2020).Crossref, CAS, Google Scholar15. Lin H, Qiu W, Liu J et al. Silicene: wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine. Adv. Mater. 31(37), 1903013 (2019).Crossref, Google Scholar16. Wang S, Riniker S. Machine learning in the area of molecular dynamics simulations. In: Artificial Intelligence in Drug Discovery. Brown N (Ed.). Royal Society of Chemistry, Cambridge, UK, 184–214 (2021).Google Scholar17. Noé F, Tkatchenko A, Müller K-R, Clementi C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020).Crossref, Medline, CAS, Google Scholar18. Shi Y, Ren P, Schnieders M, Piquemal JP. Polarizable force fields for biomolecular modeling. In: Reviews in Computational Chemistry (Volume 28). Parrill ALLipkowitz KB (Eds). John Wiley and Sons, Inc., NJ, USA, 51–86 (2015).Crossref, Google Scholar19. Harrison JA, Schall JD, Maskey S, Mikulski PT, Knippenberg MT, Morrow BH. Review of force fields and intermolecular potentials used in atomistic computational materials research. Appl. Phys. Rev. 5(3), 031104 (2018).Crossref, Google Scholar20. Chmiela S, Sauceda HE, Müller KR, Tkatchenko A. Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9(1), 3887 (2018).Crossref, Medline, Google Scholar21. Stillman NR, Kovacevic M, Balaz I, Hauert S. In silico modelling of cancer nanomedicine, across scales and transport barriers. NPJ Comput. Mater. 6(1), 1–10 (2020).Crossref, Google Scholar22. Häse F, Fdez Galván I, Aspuru-Guzik A, Lindh R, Vacher M. How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry. Chem. Sci. 10(8), 2298–2307 (2019).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Vol. 16, No. 24 Follow us on social media for the latest updates Metrics Downloaded 95 times History Received 22 March 2021 Accepted 13 August 2021 Published online 14 September 2021 Published in print October 2021 Information© 2021 Future Medicine LtdKeywordscomputational biologycomputational studyin silico studymolecular dynamicsmolecular simulationnanomedicineAuthor contributionsSupervision, review and editing: MA Shahbazi. Conceptualization, writing, review and editing: R Maleki and S Rezvantalab.AcknowledgmentsThe authors would like to to thank M Dahri and M Maleki for their support.Financial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W3200490003 created "2021-09-27" @default.
- W3200490003 creator A5011295121 @default.
- W3200490003 creator A5032252177 @default.
- W3200490003 creator A5065228706 @default.
- W3200490003 date "2021-10-01" @default.
- W3200490003 modified "2023-09-27" @default.
- W3200490003 title "Role of molecular simulation in the future of nanomedicine" @default.
- W3200490003 cites W1549273666 @default.
- W3200490003 cites W2074306242 @default.
- W3200490003 cites W2271736303 @default.
- W3200490003 cites W2415282432 @default.
- W3200490003 cites W2418335393 @default.
- W3200490003 cites W2796891927 @default.
- W3200490003 cites W2888825797 @default.
- W3200490003 cites W2892113269 @default.
- W3200490003 cites W2906453878 @default.
- W3200490003 cites W2965712998 @default.
- W3200490003 cites W3005057994 @default.
- W3200490003 cites W3005414165 @default.
- W3200490003 cites W3015256149 @default.
- W3200490003 cites W3037523055 @default.
- W3200490003 cites W3040766129 @default.
- W3200490003 cites W3092794557 @default.
- W3200490003 cites W3098321015 @default.
- W3200490003 cites W3106310231 @default.
- W3200490003 cites W3108375731 @default.
- W3200490003 cites W3113435490 @default.
- W3200490003 cites W3157615858 @default.
- W3200490003 doi "https://doi.org/10.2217/nnm-2021-0120" @default.
- W3200490003 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34519542" @default.
- W3200490003 hasPublicationYear "2021" @default.
- W3200490003 type Work @default.
- W3200490003 sameAs 3200490003 @default.
- W3200490003 citedByCount "1" @default.
- W3200490003 countsByYear W32004900032022 @default.
- W3200490003 crossrefType "journal-article" @default.
- W3200490003 hasAuthorship W3200490003A5011295121 @default.
- W3200490003 hasAuthorship W3200490003A5032252177 @default.
- W3200490003 hasAuthorship W3200490003A5065228706 @default.
- W3200490003 hasConcept C161191863 @default.
- W3200490003 hasConcept C185592680 @default.
- W3200490003 hasConcept C2779473830 @default.
- W3200490003 hasConcept C41008148 @default.
- W3200490003 hasConcept C55493867 @default.
- W3200490003 hasConceptScore W3200490003C161191863 @default.
- W3200490003 hasConceptScore W3200490003C185592680 @default.
- W3200490003 hasConceptScore W3200490003C2779473830 @default.
- W3200490003 hasConceptScore W3200490003C41008148 @default.
- W3200490003 hasConceptScore W3200490003C55493867 @default.
- W3200490003 hasIssue "24" @default.
- W3200490003 hasLocation W32004900031 @default.
- W3200490003 hasOpenAccess W3200490003 @default.
- W3200490003 hasPrimaryLocation W32004900031 @default.
- W3200490003 hasRelatedWork W1546820302 @default.
- W3200490003 hasRelatedWork W2093578348 @default.
- W3200490003 hasRelatedWork W2358668433 @default.
- W3200490003 hasRelatedWork W2376932109 @default.
- W3200490003 hasRelatedWork W2382290278 @default.
- W3200490003 hasRelatedWork W2390279801 @default.
- W3200490003 hasRelatedWork W2748952813 @default.
- W3200490003 hasRelatedWork W2899084033 @default.
- W3200490003 hasRelatedWork W2410740379 @default.
- W3200490003 hasRelatedWork W3112094302 @default.
- W3200490003 hasVolume "16" @default.
- W3200490003 isParatext "false" @default.
- W3200490003 isRetracted "false" @default.
- W3200490003 magId "3200490003" @default.
- W3200490003 workType "article" @default.