Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200492562> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3200492562 endingPage "e174" @default.
- W3200492562 startingPage "e174" @default.
- W3200492562 abstract "To develop an interpretable machine learning model for individualized gonadotropin dose selection during controlled ovarian stimulation. Historical, de-identified electronic medical record (EMR) data was collected from 4 IVF clinics in the United States. Records were filtered for autologous, non-canceled IVF retrievals, resulting in 7,977 cycles started between 2014 and 2020. A multiple linear regression model was developed with cross validation and recursive feature elimination to predict the number of eggs and mature (MII) eggs retrieved using baseline parameters available prior to start of treatment. The predictor variables were then used to create a patient similarity model based on K nearest neighbors (KNN), an interpretable machine learning technique. After identifying the best performing distance metrics, neighbor weights, and number of neighbors, the model was used to predict the number of eggs and MII eggs retrieved by calculating the weighted average from the set of K neighbors most similar to the patient of interest. The performance of the KNN model was compared to linear regression in terms of R-squared (R2) and mean absolute error (MAE). The KNN model was then used to (a) query the K most similar patients, and (b) identify the optimal gonadotropin dose in terms of highest number of MII eggs retrieved. We developed linear regression and KNN models using patient age, BMI, diagnosis, AMH, AFC, number of previous IVF cycles, and parity. KNN achieved highest performance using the Manhattan distance, 50-80 similar patients, and distance-based neighbor weighting. The KNN model outperformed linear regression for eggs retrieved (R2: 0.43 vs. 0.39, MAE: 4.84 vs. 4.98) and for MII eggs retrieved (R2: 0.39 vs. 0.35, MAE: 4.01 vs. 4.11). We then investigated the application of these models for gonadotropin dose selection. Linear models indicated that gonadotropin dose is negatively correlated with MII eggs, which may in part reflect that poor-prognosis patients are prescribed higher doses. In contrast, the KNN model showed that 22% of patients had a concave dose response curve, in which there was an optimal dose that maximized the number of MII eggs. We developed a patient similarity model using K nearest neighbors. The model showed better accuracy than linear regression for predicting eggs and MII eggs retrieved, and allowed the evaluation of which starting dose maximized the number of MII eggs retrieved, which is not possible with a linear model. Future work will optimize techniques for matching similar patients and extend the modeling for protocol selection." @default.
- W3200492562 created "2021-09-27" @default.
- W3200492562 creator A5002865530 @default.
- W3200492562 creator A5010478176 @default.
- W3200492562 creator A5035991297 @default.
- W3200492562 creator A5050726448 @default.
- W3200492562 creator A5051896635 @default.
- W3200492562 creator A5077228556 @default.
- W3200492562 date "2021-09-01" @default.
- W3200492562 modified "2023-10-07" @default.
- W3200492562 title "AN INTERPRETABLE MACHINE LEARNING MODEL FOR INDIVIDUALIZED PROTOCOL SELECTION AND GONADOTROPIN DOSE SELECTION DURING OVARIAN STIMULATION" @default.
- W3200492562 doi "https://doi.org/10.1016/j.fertnstert.2021.07.479" @default.
- W3200492562 hasPublicationYear "2021" @default.
- W3200492562 type Work @default.
- W3200492562 sameAs 3200492562 @default.
- W3200492562 citedByCount "0" @default.
- W3200492562 crossrefType "journal-article" @default.
- W3200492562 hasAuthorship W3200492562A5002865530 @default.
- W3200492562 hasAuthorship W3200492562A5010478176 @default.
- W3200492562 hasAuthorship W3200492562A5035991297 @default.
- W3200492562 hasAuthorship W3200492562A5050726448 @default.
- W3200492562 hasAuthorship W3200492562A5051896635 @default.
- W3200492562 hasAuthorship W3200492562A5077228556 @default.
- W3200492562 hasBestOaLocation W32004925621 @default.
- W3200492562 hasConcept C105795698 @default.
- W3200492562 hasConcept C113238511 @default.
- W3200492562 hasConcept C119857082 @default.
- W3200492562 hasConcept C126838900 @default.
- W3200492562 hasConcept C148483581 @default.
- W3200492562 hasConcept C152877465 @default.
- W3200492562 hasConcept C154945302 @default.
- W3200492562 hasConcept C163175372 @default.
- W3200492562 hasConcept C183115368 @default.
- W3200492562 hasConcept C33923547 @default.
- W3200492562 hasConcept C41008148 @default.
- W3200492562 hasConcept C48921125 @default.
- W3200492562 hasConcept C71924100 @default.
- W3200492562 hasConcept C83546350 @default.
- W3200492562 hasConceptScore W3200492562C105795698 @default.
- W3200492562 hasConceptScore W3200492562C113238511 @default.
- W3200492562 hasConceptScore W3200492562C119857082 @default.
- W3200492562 hasConceptScore W3200492562C126838900 @default.
- W3200492562 hasConceptScore W3200492562C148483581 @default.
- W3200492562 hasConceptScore W3200492562C152877465 @default.
- W3200492562 hasConceptScore W3200492562C154945302 @default.
- W3200492562 hasConceptScore W3200492562C163175372 @default.
- W3200492562 hasConceptScore W3200492562C183115368 @default.
- W3200492562 hasConceptScore W3200492562C33923547 @default.
- W3200492562 hasConceptScore W3200492562C41008148 @default.
- W3200492562 hasConceptScore W3200492562C48921125 @default.
- W3200492562 hasConceptScore W3200492562C71924100 @default.
- W3200492562 hasConceptScore W3200492562C83546350 @default.
- W3200492562 hasIssue "3" @default.
- W3200492562 hasLocation W32004925621 @default.
- W3200492562 hasOpenAccess W3200492562 @default.
- W3200492562 hasPrimaryLocation W32004925621 @default.
- W3200492562 hasRelatedWork W1965260523 @default.
- W3200492562 hasRelatedWork W1968483434 @default.
- W3200492562 hasRelatedWork W2003820263 @default.
- W3200492562 hasRelatedWork W2060912888 @default.
- W3200492562 hasRelatedWork W2126679046 @default.
- W3200492562 hasRelatedWork W2182608107 @default.
- W3200492562 hasRelatedWork W2375721435 @default.
- W3200492562 hasRelatedWork W3214880924 @default.
- W3200492562 hasRelatedWork W1590431271 @default.
- W3200492562 hasRelatedWork W2184922845 @default.
- W3200492562 hasVolume "116" @default.
- W3200492562 isParatext "false" @default.
- W3200492562 isRetracted "false" @default.
- W3200492562 magId "3200492562" @default.
- W3200492562 workType "article" @default.