Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200507375> ?p ?o ?g. }
- W3200507375 endingPage "126945" @default.
- W3200507375 startingPage "126945" @default.
- W3200507375 abstract "• Two-stage Decomposition Based SVMs are combined for Annual Runoff Forecasting. • The IMFs by EEMD are further decomposed by VMD. • All the decomposition based SVM models are averaged by the simple average method. • Annual runoff data of Pingshi station in 1964–2012 are used for model development. • Combined models outperform member models based on two-stage decomposition. Accurate annual runoff forecasting is of great significance for water resources management and timely flood control. However, nonlinear and non-stationary runoff series and the complexity of hydrological processes make it difficult. To improve the forecast accuracy, a hybrid model based on two-stage decomposition, the support vector machine (SVM), and the combined method is proposed. Firstly, the original annual runoff is decomposed into a series of components (IMFs) by the ensemble empirical mode decomposition (EEMD). The high frequency components of IMFs are further decomposed into multiple components (VMFs) by the variational mode decomposition (VMD). Then, the SVM is applied to predict all the components. The sum of the forecast VMFs is the forecast of each high frequency IMF and the forecast annual runoff is obtained by summarizing the forecast IMFs. Finally, all the member models are averaged by the simple average method (SAM), which is the combining model. To evaluate the proposed model, the Pingshi Station in the Lechangxia Basin, China is selected. The results show that the two-stage decomposition enormously enhances the forecasting ability. The validation R of the optimal EEMD-VMD-SVM increases by 20%, 11% and 11% compared with the optimal SVM, EEMD-SVM and VMD-SVM, respectively. The validation MSE decreases by 58%, 45% and 47%, respectively. The optimal combined model outperforms the optimal member model because the validation R and MSE increase and decrease by 3% and 28%, respectively. The optimal combined model consists of four member models based on the EEMD-VMD and one member model based on the EEMD. This study highlights that combining machine learning methods based on two-stage decomposition can effectively improve the forecast accuracy of annual runoff." @default.
- W3200507375 created "2021-09-27" @default.
- W3200507375 creator A5017417512 @default.
- W3200507375 creator A5036073152 @default.
- W3200507375 creator A5068444742 @default.
- W3200507375 date "2021-12-01" @default.
- W3200507375 modified "2023-10-06" @default.
- W3200507375 title "Combining two-stage decomposition based machine learning methods for annual runoff forecasting" @default.
- W3200507375 cites W1532983394 @default.
- W3200507375 cites W1864468960 @default.
- W3200507375 cites W1961281879 @default.
- W3200507375 cites W1969226140 @default.
- W3200507375 cites W1973048907 @default.
- W3200507375 cites W1973413625 @default.
- W3200507375 cites W1974055350 @default.
- W3200507375 cites W1982717852 @default.
- W3200507375 cites W2000982976 @default.
- W3200507375 cites W2005035326 @default.
- W3200507375 cites W2007221293 @default.
- W3200507375 cites W2015764595 @default.
- W3200507375 cites W2034159055 @default.
- W3200507375 cites W2048533094 @default.
- W3200507375 cites W2050774577 @default.
- W3200507375 cites W2056764457 @default.
- W3200507375 cites W2061671048 @default.
- W3200507375 cites W2067183857 @default.
- W3200507375 cites W2080552614 @default.
- W3200507375 cites W2083029259 @default.
- W3200507375 cites W2092466978 @default.
- W3200507375 cites W2097432457 @default.
- W3200507375 cites W2115986271 @default.
- W3200507375 cites W2120390927 @default.
- W3200507375 cites W2142534172 @default.
- W3200507375 cites W2143822331 @default.
- W3200507375 cites W2258922941 @default.
- W3200507375 cites W2441507532 @default.
- W3200507375 cites W2566512888 @default.
- W3200507375 cites W2765692959 @default.
- W3200507375 cites W2783443666 @default.
- W3200507375 cites W2792703144 @default.
- W3200507375 cites W2795923929 @default.
- W3200507375 cites W2804523998 @default.
- W3200507375 cites W2887286835 @default.
- W3200507375 cites W2898278466 @default.
- W3200507375 cites W2908827354 @default.
- W3200507375 cites W2908904086 @default.
- W3200507375 cites W2910993421 @default.
- W3200507375 cites W2915371472 @default.
- W3200507375 cites W2922267326 @default.
- W3200507375 cites W2951791429 @default.
- W3200507375 cites W2954257334 @default.
- W3200507375 cites W2983352457 @default.
- W3200507375 cites W2996516590 @default.
- W3200507375 cites W3003741609 @default.
- W3200507375 cites W3004203398 @default.
- W3200507375 cites W3008325040 @default.
- W3200507375 cites W3017246359 @default.
- W3200507375 cites W3021384304 @default.
- W3200507375 cites W3022723466 @default.
- W3200507375 cites W3036363354 @default.
- W3200507375 cites W3092521816 @default.
- W3200507375 cites W3095724529 @default.
- W3200507375 cites W3115103108 @default.
- W3200507375 cites W3126611809 @default.
- W3200507375 cites W3161929512 @default.
- W3200507375 cites W3192789775 @default.
- W3200507375 cites W754702840 @default.
- W3200507375 doi "https://doi.org/10.1016/j.jhydrol.2021.126945" @default.
- W3200507375 hasPublicationYear "2021" @default.
- W3200507375 type Work @default.
- W3200507375 sameAs 3200507375 @default.
- W3200507375 citedByCount "30" @default.
- W3200507375 countsByYear W32005073752022 @default.
- W3200507375 countsByYear W32005073752023 @default.
- W3200507375 crossrefType "journal-article" @default.
- W3200507375 hasAuthorship W3200507375A5017417512 @default.
- W3200507375 hasAuthorship W3200507375A5036073152 @default.
- W3200507375 hasAuthorship W3200507375A5068444742 @default.
- W3200507375 hasConcept C105795698 @default.
- W3200507375 hasConcept C119857082 @default.
- W3200507375 hasConcept C12267149 @default.
- W3200507375 hasConcept C124101348 @default.
- W3200507375 hasConcept C124681953 @default.
- W3200507375 hasConcept C127313418 @default.
- W3200507375 hasConcept C143724316 @default.
- W3200507375 hasConcept C146357865 @default.
- W3200507375 hasConcept C151730666 @default.
- W3200507375 hasConcept C154945302 @default.
- W3200507375 hasConcept C186370098 @default.
- W3200507375 hasConcept C18903297 @default.
- W3200507375 hasConcept C25570617 @default.
- W3200507375 hasConcept C33923547 @default.
- W3200507375 hasConcept C41008148 @default.
- W3200507375 hasConcept C50477045 @default.
- W3200507375 hasConcept C86803240 @default.
- W3200507375 hasConceptScore W3200507375C105795698 @default.
- W3200507375 hasConceptScore W3200507375C119857082 @default.
- W3200507375 hasConceptScore W3200507375C12267149 @default.