Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200516414> ?p ?o ?g. }
- W3200516414 abstract "This paper implements machine learning (ML) classification algorithms on microstructural chemical maps to predict the constituent phases. Intensities of chemical species (Ca, Al, Si, etc.), and in some cases the nanomechanical properties measured at the corresponding points, form the input to the ML model, which predicts the phase label (LD or HD C-S-H, clinker etc.) belonging to that location. Artificial neural networks (ANN) and forest ensemble methods are used for classification. Confusion matrices and receiver-operator characteristic (ROC) curves are used to analyze the classification efficiency. It is shown that, for complex microstructures such as those of ultra-high performance (UHP) pastes, the classifier performs well when nanomechanical information augments the chemical intensity data. For simpler systems such as well-hydrated plain cement pastes, the classifier accurately predicts the phase label from the intensities of Ca, Al, and Si alone. The work enables fast-and-efficient phase identification and property forecasting from microstructural chemical maps." @default.
- W3200516414 created "2021-09-27" @default.
- W3200516414 creator A5036251434 @default.
- W3200516414 creator A5072806383 @default.
- W3200516414 creator A5077576403 @default.
- W3200516414 date "2021-10-01" @default.
- W3200516414 modified "2023-09-25" @default.
- W3200516414 title "Machine Learning on Microstructural Chemical Maps to Classify Component Phases in Cement Pastes" @default.
- W3200516414 cites W1646879313 @default.
- W3200516414 cites W1803889775 @default.
- W3200516414 cites W1975087671 @default.
- W3200516414 cites W1976607104 @default.
- W3200516414 cites W1997150924 @default.
- W3200516414 cites W2006544033 @default.
- W3200516414 cites W2009954999 @default.
- W3200516414 cites W2011192732 @default.
- W3200516414 cites W2021540175 @default.
- W3200516414 cites W2031078843 @default.
- W3200516414 cites W2051166244 @default.
- W3200516414 cites W2055771634 @default.
- W3200516414 cites W2079088259 @default.
- W3200516414 cites W2086326503 @default.
- W3200516414 cites W2086933933 @default.
- W3200516414 cites W2090777956 @default.
- W3200516414 cites W2095705004 @default.
- W3200516414 cites W2097998348 @default.
- W3200516414 cites W2139164791 @default.
- W3200516414 cites W2140823292 @default.
- W3200516414 cites W2158698691 @default.
- W3200516414 cites W2163253589 @default.
- W3200516414 cites W2166765391 @default.
- W3200516414 cites W2167849100 @default.
- W3200516414 cites W2171061102 @default.
- W3200516414 cites W2205542688 @default.
- W3200516414 cites W2214709255 @default.
- W3200516414 cites W2313959516 @default.
- W3200516414 cites W2511892808 @default.
- W3200516414 cites W2535118741 @default.
- W3200516414 cites W2550891889 @default.
- W3200516414 cites W2554082083 @default.
- W3200516414 cites W2562634712 @default.
- W3200516414 cites W2585138394 @default.
- W3200516414 cites W2613338636 @default.
- W3200516414 cites W2731410284 @default.
- W3200516414 cites W2734749161 @default.
- W3200516414 cites W2761540118 @default.
- W3200516414 cites W2766422389 @default.
- W3200516414 cites W2790395721 @default.
- W3200516414 cites W2794178536 @default.
- W3200516414 cites W2888728157 @default.
- W3200516414 cites W2893769615 @default.
- W3200516414 cites W2898457755 @default.
- W3200516414 cites W2908848055 @default.
- W3200516414 cites W2950768165 @default.
- W3200516414 cites W2954962605 @default.
- W3200516414 cites W2963079893 @default.
- W3200516414 cites W3001229584 @default.
- W3200516414 cites W3003862679 @default.
- W3200516414 cites W3009211770 @default.
- W3200516414 cites W3013379390 @default.
- W3200516414 cites W3014437714 @default.
- W3200516414 cites W3019001272 @default.
- W3200516414 cites W3037228997 @default.
- W3200516414 cites W3086614971 @default.
- W3200516414 cites W3102476541 @default.
- W3200516414 doi "https://doi.org/10.22115/scce.2021.302400.1357" @default.
- W3200516414 hasPublicationYear "2021" @default.
- W3200516414 type Work @default.
- W3200516414 sameAs 3200516414 @default.
- W3200516414 citedByCount "2" @default.
- W3200516414 countsByYear W32005164142021 @default.
- W3200516414 crossrefType "journal-article" @default.
- W3200516414 hasAuthorship W3200516414A5036251434 @default.
- W3200516414 hasAuthorship W3200516414A5072806383 @default.
- W3200516414 hasAuthorship W3200516414A5077576403 @default.
- W3200516414 hasConcept C121332964 @default.
- W3200516414 hasConcept C127313418 @default.
- W3200516414 hasConcept C159985019 @default.
- W3200516414 hasConcept C168167062 @default.
- W3200516414 hasConcept C192562407 @default.
- W3200516414 hasConcept C199289684 @default.
- W3200516414 hasConcept C523993062 @default.
- W3200516414 hasConcept C97355855 @default.
- W3200516414 hasConceptScore W3200516414C121332964 @default.
- W3200516414 hasConceptScore W3200516414C127313418 @default.
- W3200516414 hasConceptScore W3200516414C159985019 @default.
- W3200516414 hasConceptScore W3200516414C168167062 @default.
- W3200516414 hasConceptScore W3200516414C192562407 @default.
- W3200516414 hasConceptScore W3200516414C199289684 @default.
- W3200516414 hasConceptScore W3200516414C523993062 @default.
- W3200516414 hasConceptScore W3200516414C97355855 @default.
- W3200516414 hasLocation W32005164141 @default.
- W3200516414 hasOpenAccess W3200516414 @default.
- W3200516414 hasPrimaryLocation W32005164141 @default.
- W3200516414 hasRelatedWork W2051270029 @default.
- W3200516414 hasRelatedWork W2082293200 @default.
- W3200516414 hasRelatedWork W2380293314 @default.
- W3200516414 hasRelatedWork W2389731263 @default.
- W3200516414 hasRelatedWork W2757078053 @default.
- W3200516414 hasRelatedWork W2886057184 @default.