Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200517840> ?p ?o ?g. }
- W3200517840 endingPage "4507" @default.
- W3200517840 startingPage "4497" @default.
- W3200517840 abstract "Nasopharyngeal Carcinoma (NPC) is a malignant epithelial cancer arising from the nasopharynx. Survival prediction is a major concern for NPC patients, as it provides early prognostic information to plan treatments. Recently, deep survival models based on deep learning have demonstrated the potential to outperform traditional radiomics-based survival prediction models. Deep survival models usually use image patches covering the whole target regions (e.g., nasopharynx for NPC) or containing only segmented tumor regions as the input. However, the models using the whole target regions will also include non-relevant background information, while the models using segmented tumor regions will disregard potentially prognostic information existing out of primary tumors (e.g., local lymph node metastasis and adjacent tissue invasion). In this study, we propose a 3D end-to-end Deep Multi-Task Survival model (DeepMTS) for joint survival prediction and tumor segmentation in advanced NPC from pretreatment PET/CT. Our novelty is the introduction of a hard-sharing segmentation backbone to guide the extraction of local features related to the primary tumors, which reduces the interference from non-relevant background information. In addition, we also introduce a cascaded survival network to capture the prognostic information existing out of primary tumors and further leverage the global tumor information (e.g., tumor size, shape, and locations) derived from the segmentation backbone. Our experiments with two clinical datasets demonstrate that our DeepMTS can consistently outperform traditional radiomics-based survival prediction models and existing deep survival models." @default.
- W3200517840 created "2021-09-27" @default.
- W3200517840 creator A5015039086 @default.
- W3200517840 creator A5022712090 @default.
- W3200517840 creator A5026400835 @default.
- W3200517840 creator A5068891693 @default.
- W3200517840 creator A5087860365 @default.
- W3200517840 creator A5090651086 @default.
- W3200517840 date "2022-09-01" @default.
- W3200517840 modified "2023-10-06" @default.
- W3200517840 title "DeepMTS: Deep Multi-Task Learning for Survival Prediction in Patients With Advanced Nasopharyngeal Carcinoma Using Pretreatment PET/CT" @default.
- W3200517840 cites W1966455406 @default.
- W3200517840 cites W2129925362 @default.
- W3200517840 cites W2149199519 @default.
- W3200517840 cites W2157076315 @default.
- W3200517840 cites W2174661749 @default.
- W3200517840 cites W2501667437 @default.
- W3200517840 cites W2591992783 @default.
- W3200517840 cites W2600642189 @default.
- W3200517840 cites W2753919178 @default.
- W3200517840 cites W2756818491 @default.
- W3200517840 cites W2768968764 @default.
- W3200517840 cites W2783789550 @default.
- W3200517840 cites W2798890825 @default.
- W3200517840 cites W2802611745 @default.
- W3200517840 cites W2806597033 @default.
- W3200517840 cites W2892827481 @default.
- W3200517840 cites W2913197325 @default.
- W3200517840 cites W2939853793 @default.
- W3200517840 cites W2950535890 @default.
- W3200517840 cites W2954017268 @default.
- W3200517840 cites W2962914239 @default.
- W3200517840 cites W2963446712 @default.
- W3200517840 cites W2979940269 @default.
- W3200517840 cites W2985140510 @default.
- W3200517840 cites W3010245316 @default.
- W3200517840 cites W3024107846 @default.
- W3200517840 cites W3046915669 @default.
- W3200517840 cites W3092624683 @default.
- W3200517840 cites W3099478002 @default.
- W3200517840 cites W3106266685 @default.
- W3200517840 cites W3128646645 @default.
- W3200517840 cites W3135861563 @default.
- W3200517840 cites W3139349917 @default.
- W3200517840 cites W3141797743 @default.
- W3200517840 cites W3147894994 @default.
- W3200517840 cites W3203713163 @default.
- W3200517840 cites W4210983491 @default.
- W3200517840 cites W4226081887 @default.
- W3200517840 doi "https://doi.org/10.1109/jbhi.2022.3181791" @default.
- W3200517840 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35696469" @default.
- W3200517840 hasPublicationYear "2022" @default.
- W3200517840 type Work @default.
- W3200517840 sameAs 3200517840 @default.
- W3200517840 citedByCount "10" @default.
- W3200517840 countsByYear W32005178402022 @default.
- W3200517840 countsByYear W32005178402023 @default.
- W3200517840 crossrefType "journal-article" @default.
- W3200517840 hasAuthorship W3200517840A5015039086 @default.
- W3200517840 hasAuthorship W3200517840A5022712090 @default.
- W3200517840 hasAuthorship W3200517840A5026400835 @default.
- W3200517840 hasAuthorship W3200517840A5068891693 @default.
- W3200517840 hasAuthorship W3200517840A5087860365 @default.
- W3200517840 hasAuthorship W3200517840A5090651086 @default.
- W3200517840 hasBestOaLocation W32005178402 @default.
- W3200517840 hasConcept C10515644 @default.
- W3200517840 hasConcept C108583219 @default.
- W3200517840 hasConcept C119857082 @default.
- W3200517840 hasConcept C121608353 @default.
- W3200517840 hasConcept C126322002 @default.
- W3200517840 hasConcept C126838900 @default.
- W3200517840 hasConcept C143998085 @default.
- W3200517840 hasConcept C154945302 @default.
- W3200517840 hasConcept C2778997737 @default.
- W3200517840 hasConcept C2779013556 @default.
- W3200517840 hasConcept C2780283643 @default.
- W3200517840 hasConcept C41008148 @default.
- W3200517840 hasConcept C509974204 @default.
- W3200517840 hasConcept C71924100 @default.
- W3200517840 hasConcept C89600930 @default.
- W3200517840 hasConceptScore W3200517840C10515644 @default.
- W3200517840 hasConceptScore W3200517840C108583219 @default.
- W3200517840 hasConceptScore W3200517840C119857082 @default.
- W3200517840 hasConceptScore W3200517840C121608353 @default.
- W3200517840 hasConceptScore W3200517840C126322002 @default.
- W3200517840 hasConceptScore W3200517840C126838900 @default.
- W3200517840 hasConceptScore W3200517840C143998085 @default.
- W3200517840 hasConceptScore W3200517840C154945302 @default.
- W3200517840 hasConceptScore W3200517840C2778997737 @default.
- W3200517840 hasConceptScore W3200517840C2779013556 @default.
- W3200517840 hasConceptScore W3200517840C2780283643 @default.
- W3200517840 hasConceptScore W3200517840C41008148 @default.
- W3200517840 hasConceptScore W3200517840C509974204 @default.
- W3200517840 hasConceptScore W3200517840C71924100 @default.
- W3200517840 hasConceptScore W3200517840C89600930 @default.
- W3200517840 hasFunder F4320334704 @default.
- W3200517840 hasIssue "9" @default.
- W3200517840 hasLocation W32005178401 @default.