Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200521791> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3200521791 abstract "Vessel width estimation has a wide range of applications in disease diagnosis and treatment. In this paper, vessel width estimation is cast as a regression problem, and a novel Convolutional Neural Network (CNN) based method is proposed for vessel width estimation. In our CNN-based method, the idea of divide-and-conquer is introduced to solve the challenge of imbalanced training samples. Besides, in order to solve the shortage of training samples required by CNN, a vessel width label generation method is proposed to generate width labels from vessel segmentation labels. In the experiments, we apply our vessel width label generation method and CNN-based width estimation method to two tasks which are retinal vessel width estimation and coronary artery width estimation. Experimental results show that our width label generation method can generate sufficiently realistic width labels using accurate segmentation labels. Also, our CNN-based method can solve the challenge of imbalanced training samples, achieving state-of-the-art performance with less inference time." @default.
- W3200521791 created "2021-09-27" @default.
- W3200521791 creator A5017968236 @default.
- W3200521791 creator A5027182487 @default.
- W3200521791 creator A5033076846 @default.
- W3200521791 creator A5038613343 @default.
- W3200521791 creator A5038907015 @default.
- W3200521791 creator A5065679716 @default.
- W3200521791 creator A5068915028 @default.
- W3200521791 creator A5069765960 @default.
- W3200521791 date "2021-01-01" @default.
- W3200521791 modified "2023-09-23" @default.
- W3200521791 title "Vessel Width Estimation via Convolutional Regression" @default.
- W3200521791 cites W1901129140 @default.
- W3200521791 cites W1993152534 @default.
- W3200521791 cites W2004520467 @default.
- W3200521791 cites W2039367092 @default.
- W3200521791 cites W2108764134 @default.
- W3200521791 cites W2127302541 @default.
- W3200521791 cites W2150769593 @default.
- W3200521791 cites W2152263083 @default.
- W3200521791 cites W2155122478 @default.
- W3200521791 cites W2171459511 @default.
- W3200521791 cites W2539154683 @default.
- W3200521791 cites W2748140016 @default.
- W3200521791 cites W2754015852 @default.
- W3200521791 cites W2918359971 @default.
- W3200521791 cites W2955216108 @default.
- W3200521791 cites W2979374746 @default.
- W3200521791 doi "https://doi.org/10.1007/978-3-030-87231-1_58" @default.
- W3200521791 hasPublicationYear "2021" @default.
- W3200521791 type Work @default.
- W3200521791 sameAs 3200521791 @default.
- W3200521791 citedByCount "0" @default.
- W3200521791 crossrefType "book-chapter" @default.
- W3200521791 hasAuthorship W3200521791A5017968236 @default.
- W3200521791 hasAuthorship W3200521791A5027182487 @default.
- W3200521791 hasAuthorship W3200521791A5033076846 @default.
- W3200521791 hasAuthorship W3200521791A5038613343 @default.
- W3200521791 hasAuthorship W3200521791A5038907015 @default.
- W3200521791 hasAuthorship W3200521791A5065679716 @default.
- W3200521791 hasAuthorship W3200521791A5068915028 @default.
- W3200521791 hasAuthorship W3200521791A5069765960 @default.
- W3200521791 hasConcept C11413529 @default.
- W3200521791 hasConcept C138885662 @default.
- W3200521791 hasConcept C153180895 @default.
- W3200521791 hasConcept C154945302 @default.
- W3200521791 hasConcept C194051981 @default.
- W3200521791 hasConcept C2776214188 @default.
- W3200521791 hasConcept C2778137410 @default.
- W3200521791 hasConcept C31972630 @default.
- W3200521791 hasConcept C41008148 @default.
- W3200521791 hasConcept C41895202 @default.
- W3200521791 hasConcept C81363708 @default.
- W3200521791 hasConcept C89600930 @default.
- W3200521791 hasConceptScore W3200521791C11413529 @default.
- W3200521791 hasConceptScore W3200521791C138885662 @default.
- W3200521791 hasConceptScore W3200521791C153180895 @default.
- W3200521791 hasConceptScore W3200521791C154945302 @default.
- W3200521791 hasConceptScore W3200521791C194051981 @default.
- W3200521791 hasConceptScore W3200521791C2776214188 @default.
- W3200521791 hasConceptScore W3200521791C2778137410 @default.
- W3200521791 hasConceptScore W3200521791C31972630 @default.
- W3200521791 hasConceptScore W3200521791C41008148 @default.
- W3200521791 hasConceptScore W3200521791C41895202 @default.
- W3200521791 hasConceptScore W3200521791C81363708 @default.
- W3200521791 hasConceptScore W3200521791C89600930 @default.
- W3200521791 hasLocation W32005217911 @default.
- W3200521791 hasOpenAccess W3200521791 @default.
- W3200521791 hasPrimaryLocation W32005217911 @default.
- W3200521791 hasRelatedWork W11130107 @default.
- W3200521791 hasRelatedWork W11270157 @default.
- W3200521791 hasRelatedWork W14128562 @default.
- W3200521791 hasRelatedWork W1602910 @default.
- W3200521791 hasRelatedWork W1679810 @default.
- W3200521791 hasRelatedWork W274842 @default.
- W3200521791 hasRelatedWork W3089489 @default.
- W3200521791 hasRelatedWork W6473745 @default.
- W3200521791 hasRelatedWork W7789328 @default.
- W3200521791 hasRelatedWork W3000238 @default.
- W3200521791 isParatext "false" @default.
- W3200521791 isRetracted "false" @default.
- W3200521791 magId "3200521791" @default.
- W3200521791 workType "book-chapter" @default.