Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200569265> ?p ?o ?g. }
- W3200569265 endingPage "473" @default.
- W3200569265 startingPage "458" @default.
- W3200569265 abstract "—Theft detection in the power sector is a significant challenge for power distribution companies worldwide. The power losses are mainly due to dissipation from wires or theft done by manipulating energy meters or tapping cables at the consumer end. With power theft becoming a global issue, automatic detection of robbery is the need of the hour. This paper presents a deep learning-based solution for automated detection of power theft using consumers’ consumption data. In this work, fully connected neural networks are trained on daily consumption data, and customized convolutional neural networks (CNN) and residual networks are trained on weekly consumption data. The models are evaluated using the area under the receiver operating characteristics curve (AUC) metric, which measures the degree of separation between the predicted classes. The results obtained on the real dataset indicate that residual networks provide better results than other methods, and ResNet34 outperforms the existing methods in the literature. The proposed system has a high potential to detect power theft in households, which can help the authorities cut down non-technical losses occurring in the power sector." @default.
- W3200569265 created "2021-09-27" @default.
- W3200569265 creator A5040116909 @default.
- W3200569265 creator A5049189583 @default.
- W3200569265 creator A5083459076 @default.
- W3200569265 creator A5083940671 @default.
- W3200569265 date "2021-03-16" @default.
- W3200569265 modified "2023-10-18" @default.
- W3200569265 title "Power Theft Detection Using Deep Neural Networks" @default.
- W3200569265 cites W1512298495 @default.
- W3200569265 cites W1559733056 @default.
- W3200569265 cites W1918839972 @default.
- W3200569265 cites W1964303812 @default.
- W3200569265 cites W1980835351 @default.
- W3200569265 cites W2028788479 @default.
- W3200569265 cites W2042906674 @default.
- W3200569265 cites W2083643015 @default.
- W3200569265 cites W2098750759 @default.
- W3200569265 cites W2100495367 @default.
- W3200569265 cites W2102828313 @default.
- W3200569265 cites W2111027089 @default.
- W3200569265 cites W2122922389 @default.
- W3200569265 cites W2148212699 @default.
- W3200569265 cites W2167587530 @default.
- W3200569265 cites W2169783907 @default.
- W3200569265 cites W2212529815 @default.
- W3200569265 cites W2312446965 @default.
- W3200569265 cites W2320464932 @default.
- W3200569265 cites W2324861975 @default.
- W3200569265 cites W2344082303 @default.
- W3200569265 cites W2394555949 @default.
- W3200569265 cites W2550564597 @default.
- W3200569265 cites W2584617969 @default.
- W3200569265 cites W2735907490 @default.
- W3200569265 cites W2776990447 @default.
- W3200569265 cites W2788544268 @default.
- W3200569265 cites W2789012589 @default.
- W3200569265 cites W2793717822 @default.
- W3200569265 cites W2803734570 @default.
- W3200569265 cites W2894817759 @default.
- W3200569265 cites W2900774972 @default.
- W3200569265 cites W2908746407 @default.
- W3200569265 cites W2914780389 @default.
- W3200569265 cites W2946553709 @default.
- W3200569265 cites W2964192219 @default.
- W3200569265 cites W2968807154 @default.
- W3200569265 cites W2970705010 @default.
- W3200569265 cites W2986684586 @default.
- W3200569265 cites W3011279108 @default.
- W3200569265 cites W3034856730 @default.
- W3200569265 cites W3037931488 @default.
- W3200569265 cites W3090158923 @default.
- W3200569265 doi "https://doi.org/10.1080/15325008.2021.1970055" @default.
- W3200569265 hasPublicationYear "2021" @default.
- W3200569265 type Work @default.
- W3200569265 sameAs 3200569265 @default.
- W3200569265 citedByCount "3" @default.
- W3200569265 countsByYear W32005692652022 @default.
- W3200569265 countsByYear W32005692652023 @default.
- W3200569265 crossrefType "journal-article" @default.
- W3200569265 hasAuthorship W3200569265A5040116909 @default.
- W3200569265 hasAuthorship W3200569265A5049189583 @default.
- W3200569265 hasAuthorship W3200569265A5083459076 @default.
- W3200569265 hasAuthorship W3200569265A5083940671 @default.
- W3200569265 hasConcept C108583219 @default.
- W3200569265 hasConcept C11413529 @default.
- W3200569265 hasConcept C119599485 @default.
- W3200569265 hasConcept C119857082 @default.
- W3200569265 hasConcept C121332964 @default.
- W3200569265 hasConcept C124101348 @default.
- W3200569265 hasConcept C127413603 @default.
- W3200569265 hasConcept C154945302 @default.
- W3200569265 hasConcept C155512373 @default.
- W3200569265 hasConcept C163258240 @default.
- W3200569265 hasConcept C176217482 @default.
- W3200569265 hasConcept C21547014 @default.
- W3200569265 hasConcept C2780165032 @default.
- W3200569265 hasConcept C41008148 @default.
- W3200569265 hasConcept C50644808 @default.
- W3200569265 hasConcept C62520636 @default.
- W3200569265 hasConcept C79403827 @default.
- W3200569265 hasConcept C81363708 @default.
- W3200569265 hasConceptScore W3200569265C108583219 @default.
- W3200569265 hasConceptScore W3200569265C11413529 @default.
- W3200569265 hasConceptScore W3200569265C119599485 @default.
- W3200569265 hasConceptScore W3200569265C119857082 @default.
- W3200569265 hasConceptScore W3200569265C121332964 @default.
- W3200569265 hasConceptScore W3200569265C124101348 @default.
- W3200569265 hasConceptScore W3200569265C127413603 @default.
- W3200569265 hasConceptScore W3200569265C154945302 @default.
- W3200569265 hasConceptScore W3200569265C155512373 @default.
- W3200569265 hasConceptScore W3200569265C163258240 @default.
- W3200569265 hasConceptScore W3200569265C176217482 @default.
- W3200569265 hasConceptScore W3200569265C21547014 @default.
- W3200569265 hasConceptScore W3200569265C2780165032 @default.
- W3200569265 hasConceptScore W3200569265C41008148 @default.
- W3200569265 hasConceptScore W3200569265C50644808 @default.
- W3200569265 hasConceptScore W3200569265C62520636 @default.