Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200611412> ?p ?o ?g. }
- W3200611412 endingPage "1732" @default.
- W3200611412 startingPage "1732" @default.
- W3200611412 abstract "The symmetry SU(2) and its geometric Bloch Sphere rendering have been successfully applied to the study of a single qubit (spin-1/2); however, the extension of such symmetries and geometries to multiple qubits—even just two—has been investigated far less, despite the centrality of such systems for quantum information processes. In the last two decades, two different approaches, with independent starting points and motivations, have been combined for this purpose. One approach has been to develop the unitary time evolution of two or more qubits in order to study quantum correlations; by exploiting the relevant Lie algebras and, especially, sub-algebras of the Hamiltonians involved, researchers have arrived at connections to finite projective geometries and combinatorial designs. Independently, geometers, by studying projective ring lines and associated finite geometries, have come to parallel conclusions. This review brings together the Lie-algebraic/group-representation perspective of quantum physics and the geometric–algebraic one, as well as their connections to complex quaternions. Altogether, this may be seen as further development of Felix Klein’s Erlangen Program for symmetries and geometries. In particular, the fifteen generators of the continuous SU(4) Lie group for two qubits can be placed in one-to-one correspondence with finite projective geometries, combinatorial Steiner designs, and finite quaternionic groups. The very different perspectives that we consider may provide further insight into quantum information problems. Extensions are considered for multiple qubits, as well as higher-spin or higher-dimensional qudits." @default.
- W3200611412 created "2021-09-27" @default.
- W3200611412 creator A5039891277 @default.
- W3200611412 date "2021-09-18" @default.
- W3200611412 modified "2023-09-26" @default.
- W3200611412 title "Symmetries and Geometries of Qubits, and Their Uses" @default.
- W3200611412 cites W1512713374 @default.
- W3200611412 cites W1571385165 @default.
- W3200611412 cites W1819981691 @default.
- W3200611412 cites W1914324947 @default.
- W3200611412 cites W1967019440 @default.
- W3200611412 cites W1969304762 @default.
- W3200611412 cites W1969840935 @default.
- W3200611412 cites W1973787174 @default.
- W3200611412 cites W1974928788 @default.
- W3200611412 cites W1977576843 @default.
- W3200611412 cites W1977997915 @default.
- W3200611412 cites W1980451640 @default.
- W3200611412 cites W1983230786 @default.
- W3200611412 cites W1987339874 @default.
- W3200611412 cites W1991769745 @default.
- W3200611412 cites W1996027154 @default.
- W3200611412 cites W1996616239 @default.
- W3200611412 cites W1997463664 @default.
- W3200611412 cites W1999621961 @default.
- W3200611412 cites W2000256072 @default.
- W3200611412 cites W2001769389 @default.
- W3200611412 cites W2005387627 @default.
- W3200611412 cites W2007171191 @default.
- W3200611412 cites W2008507710 @default.
- W3200611412 cites W2011191603 @default.
- W3200611412 cites W2011208902 @default.
- W3200611412 cites W2014843353 @default.
- W3200611412 cites W2020885650 @default.
- W3200611412 cites W2024025961 @default.
- W3200611412 cites W2025028812 @default.
- W3200611412 cites W2025541261 @default.
- W3200611412 cites W2029289973 @default.
- W3200611412 cites W2031063776 @default.
- W3200611412 cites W2031809730 @default.
- W3200611412 cites W2032946546 @default.
- W3200611412 cites W2034920898 @default.
- W3200611412 cites W2038645424 @default.
- W3200611412 cites W2039763880 @default.
- W3200611412 cites W2041867773 @default.
- W3200611412 cites W2046541203 @default.
- W3200611412 cites W2056974003 @default.
- W3200611412 cites W2058093223 @default.
- W3200611412 cites W2059951205 @default.
- W3200611412 cites W2062292260 @default.
- W3200611412 cites W2063782370 @default.
- W3200611412 cites W2066365197 @default.
- W3200611412 cites W2069711632 @default.
- W3200611412 cites W2071348433 @default.
- W3200611412 cites W2071655767 @default.
- W3200611412 cites W2073278895 @default.
- W3200611412 cites W2073595591 @default.
- W3200611412 cites W2079451982 @default.
- W3200611412 cites W2083338484 @default.
- W3200611412 cites W2083852083 @default.
- W3200611412 cites W2089110262 @default.
- W3200611412 cites W2097080478 @default.
- W3200611412 cites W2111843749 @default.
- W3200611412 cites W2122187744 @default.
- W3200611412 cites W2123952118 @default.
- W3200611412 cites W2130117852 @default.
- W3200611412 cites W2131318134 @default.
- W3200611412 cites W2147733222 @default.
- W3200611412 cites W2159096087 @default.
- W3200611412 cites W2220305002 @default.
- W3200611412 cites W2291460367 @default.
- W3200611412 cites W2298404618 @default.
- W3200611412 cites W2335481001 @default.
- W3200611412 cites W2593989580 @default.
- W3200611412 cites W2760388500 @default.
- W3200611412 cites W2793365829 @default.
- W3200611412 cites W2899246544 @default.
- W3200611412 cites W2904080823 @default.
- W3200611412 cites W2944954863 @default.
- W3200611412 cites W2949350755 @default.
- W3200611412 cites W2963591016 @default.
- W3200611412 cites W2964176932 @default.
- W3200611412 cites W2994968451 @default.
- W3200611412 cites W3014331132 @default.
- W3200611412 cites W3037737784 @default.
- W3200611412 cites W3048167504 @default.
- W3200611412 cites W3092347397 @default.
- W3200611412 cites W3099258822 @default.
- W3200611412 cites W3100249526 @default.
- W3200611412 cites W3101988613 @default.
- W3200611412 cites W3103178785 @default.
- W3200611412 cites W3105495476 @default.
- W3200611412 cites W3105556393 @default.
- W3200611412 cites W3124939140 @default.
- W3200611412 cites W3136622682 @default.
- W3200611412 cites W3176551562 @default.
- W3200611412 cites W4235693166 @default.
- W3200611412 cites W4247682222 @default.