Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200616132> ?p ?o ?g. }
- W3200616132 endingPage "301" @default.
- W3200616132 startingPage "287" @default.
- W3200616132 abstract "RNA-binding proteins (RBPs) play a significant part in several biological processes in the living cell, such as gene regulation and mRNA localization. The research indicates that the mutation of RBPs will lead to some serious diseases. Several deep learning methods, especially the model based on convolutional neural network (CNN), have been used to predict the binding sites. However, these methods only use single-scale filters to extract a fixed length of motifs features, which restricts the performance of prediction. For the sequence data, different sizes of filters may learn different biological information of the RNA sequence. Therefore, a deep multi-scale attention network (DeepMSA) based on convolutional neural network is proposed to predict the sequence-binding preferences of RBPs. DeepMSA extracts features by multi-scale CNNs and integrates these features with an attention model to predict the RBPs and binding motifs. Experiments demonstrate DeepMSA outperforms several state-of-the-art methods on the invivo and invitro datasets. The results indicate that attention can make the model learn the consistent pattern of candidate motifs, which can provide some important guiding advice for RBP motifs." @default.
- W3200616132 created "2021-09-27" @default.
- W3200616132 creator A5040629308 @default.
- W3200616132 creator A5040682575 @default.
- W3200616132 creator A5060042752 @default.
- W3200616132 date "2022-01-01" @default.
- W3200616132 modified "2023-10-16" @default.
- W3200616132 title "Deep multi-scale attention network for RNA-binding proteins prediction" @default.
- W3200616132 cites W1019830208 @default.
- W3200616132 cites W1596947964 @default.
- W3200616132 cites W1965557392 @default.
- W3200616132 cites W1974898488 @default.
- W3200616132 cites W1980913885 @default.
- W3200616132 cites W1997535872 @default.
- W3200616132 cites W1998040815 @default.
- W3200616132 cites W2003972847 @default.
- W3200616132 cites W2029979788 @default.
- W3200616132 cites W2046589863 @default.
- W3200616132 cites W2053003053 @default.
- W3200616132 cites W2063798177 @default.
- W3200616132 cites W2082102894 @default.
- W3200616132 cites W2100495367 @default.
- W3200616132 cites W2101289642 @default.
- W3200616132 cites W2103375140 @default.
- W3200616132 cites W2103777723 @default.
- W3200616132 cites W2105694586 @default.
- W3200616132 cites W2112796928 @default.
- W3200616132 cites W2118239316 @default.
- W3200616132 cites W2132863465 @default.
- W3200616132 cites W2147946837 @default.
- W3200616132 cites W2148786900 @default.
- W3200616132 cites W2157009395 @default.
- W3200616132 cites W2159249646 @default.
- W3200616132 cites W2160626228 @default.
- W3200616132 cites W2160815625 @default.
- W3200616132 cites W2164814636 @default.
- W3200616132 cites W2198606573 @default.
- W3200616132 cites W2245239316 @default.
- W3200616132 cites W2285139619 @default.
- W3200616132 cites W2293634267 @default.
- W3200616132 cites W2419834209 @default.
- W3200616132 cites W2470414691 @default.
- W3200616132 cites W2730472814 @default.
- W3200616132 cites W2799487719 @default.
- W3200616132 cites W2884585870 @default.
- W3200616132 cites W2884914958 @default.
- W3200616132 cites W2890132714 @default.
- W3200616132 cites W3106930452 @default.
- W3200616132 doi "https://doi.org/10.1016/j.ins.2021.09.025" @default.
- W3200616132 hasPublicationYear "2022" @default.
- W3200616132 type Work @default.
- W3200616132 sameAs 3200616132 @default.
- W3200616132 citedByCount "10" @default.
- W3200616132 countsByYear W32006161322022 @default.
- W3200616132 countsByYear W32006161322023 @default.
- W3200616132 crossrefType "journal-article" @default.
- W3200616132 hasAuthorship W3200616132A5040629308 @default.
- W3200616132 hasAuthorship W3200616132A5040682575 @default.
- W3200616132 hasAuthorship W3200616132A5060042752 @default.
- W3200616132 hasConcept C104317684 @default.
- W3200616132 hasConcept C108583219 @default.
- W3200616132 hasConcept C117745874 @default.
- W3200616132 hasConcept C119857082 @default.
- W3200616132 hasConcept C121332964 @default.
- W3200616132 hasConcept C154945302 @default.
- W3200616132 hasConcept C2778112365 @default.
- W3200616132 hasConcept C2778755073 @default.
- W3200616132 hasConcept C41008148 @default.
- W3200616132 hasConcept C41282012 @default.
- W3200616132 hasConcept C54355233 @default.
- W3200616132 hasConcept C62520636 @default.
- W3200616132 hasConcept C67705224 @default.
- W3200616132 hasConcept C70721500 @default.
- W3200616132 hasConcept C81363708 @default.
- W3200616132 hasConcept C86803240 @default.
- W3200616132 hasConceptScore W3200616132C104317684 @default.
- W3200616132 hasConceptScore W3200616132C108583219 @default.
- W3200616132 hasConceptScore W3200616132C117745874 @default.
- W3200616132 hasConceptScore W3200616132C119857082 @default.
- W3200616132 hasConceptScore W3200616132C121332964 @default.
- W3200616132 hasConceptScore W3200616132C154945302 @default.
- W3200616132 hasConceptScore W3200616132C2778112365 @default.
- W3200616132 hasConceptScore W3200616132C2778755073 @default.
- W3200616132 hasConceptScore W3200616132C41008148 @default.
- W3200616132 hasConceptScore W3200616132C41282012 @default.
- W3200616132 hasConceptScore W3200616132C54355233 @default.
- W3200616132 hasConceptScore W3200616132C62520636 @default.
- W3200616132 hasConceptScore W3200616132C67705224 @default.
- W3200616132 hasConceptScore W3200616132C70721500 @default.
- W3200616132 hasConceptScore W3200616132C81363708 @default.
- W3200616132 hasConceptScore W3200616132C86803240 @default.
- W3200616132 hasFunder F4320321001 @default.
- W3200616132 hasFunder F4320321543 @default.
- W3200616132 hasFunder F4320335787 @default.
- W3200616132 hasFunder F4320335957 @default.
- W3200616132 hasLocation W32006161321 @default.
- W3200616132 hasOpenAccess W3200616132 @default.
- W3200616132 hasPrimaryLocation W32006161321 @default.