Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200633654> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3200633654 endingPage "873" @default.
- W3200633654 startingPage "872" @default.
- W3200633654 abstract "We read with interest the article by Laique et al1Laique S.N. Hayat U. Sarvepalli S. et al.Application of optical character recognition with natural language processing for large-scale quality metric data extraction in colonoscopy reports.Gastrointest Endosc. 2021; 93: 750-757Abstract Full Text Full Text PDF PubMed Scopus (10) Google Scholar and the respective editorial by Pilonis and Kaminski2Pilonis N.D. Kaminski M.F. Will machines decipher colonoscopy quality from endoscopists' notes?.Gastrointest Endosc. 2021; 93: 758-760Abstract Full Text Full Text PDF PubMed Scopus (1) Google Scholar on the use of commercially available software tools for large-scale quality metric data extraction from colonoscopy and pathology reports. In both articles, the perspective is placed on an attainable streamlining of quality indicators extraction by the hybrid solution of optical character recognition (OCR) and natural language processing (NLP), thereby offsetting the possible lack of structured, nonauditable, GI electronic healthcare records (EHR). Considering the speed at which artificial intelligence (AI) technologies are evolving, there is a distinct possibility for worldwide deployment of such solutions in routine clinical practice.3Ahmad O.F. Stoyanov D. Lovat L.B. Barriers and pitfalls for artificial intelligence in gastroenterology: ethical and regulatory issues.Tech Innov Gastrointest Endosc. 2020; 22: 80-84Abstract Full Text Full Text PDF Scopus (12) Google Scholar Although salient as an idea and in line with the trend of AI integration in endoscopy, the proposed validation by Laique et al1Laique S.N. Hayat U. Sarvepalli S. et al.Application of optical character recognition with natural language processing for large-scale quality metric data extraction in colonoscopy reports.Gastrointest Endosc. 2021; 93: 750-757Abstract Full Text Full Text PDF PubMed Scopus (10) Google Scholar is against a known lesser reference standard: human performance in deciding, eg, colon cleanliness or extracting quality indicators from structured GI reporting systems. In an era when singularity4https://en.wikipedia.org/wiki/The_Singularity_Is_NearGoogle Scholar is much discussed, we need to reconsider our traditional ways and approaches. Maybe we simply need to immerse in the attainable potential of AI providing for us what is downright tedious yet necessary for high-quality, precise patient care. Perhaps we could ask our engineering colleagues to develop an interface that can filter and use optico-acoustic stimuli of the endoscopy room, including endoscopic images of pathologic features, voice-activated capture of, eg, colonoscopy landmarks, and transcription of room interactions much like the “black box” of airplanes cockpit. Pandemic-related issues have already jeopardized many ongoing colorectal cancer (CRC) screening programs.5Balzora S. Issaka R.B. Anyane-Yeboa A. et al.Impact of COVID-19 on colorectal cancer disparities and the way forward.Gastrointest Endosc. 2020; 92: 946-950Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar This will have a severe future impact, especially in low-income and middle-income countries where healthcare budgets are seriously depleted. Even highly developed countries with well-established CRC screening will struggle to provide delayed higher colonoscopy demand,5Balzora S. Issaka R.B. Anyane-Yeboa A. et al.Impact of COVID-19 on colorectal cancer disparities and the way forward.Gastrointest Endosc. 2020; 92: 946-950Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar let alone invest in the AI systems infrastructure required to provide large-scale data extractions. However, there is evidence that adaptation through the adoption of innovative solutions is on the rise.6Koulaouzidis G. Marlicz W. Koulaouzidis A. Telemedicine in the time of COVID-19: better late than never.Am J Gastroenterol. 2021; 116: 1088-1089Crossref PubMed Scopus (4) Google Scholar,7Koulaouzidis A. Marlicz W. Wenzek H. et al.Returning to digestive endoscopy normality will be slow and must include novelty and telemedicine.Dig Liver Dis. 2020; 52: 1099-1101Abstract Full Text Full Text PDF PubMed Scopus (8) Google Scholar Laique et al1Laique S.N. Hayat U. Sarvepalli S. et al.Application of optical character recognition with natural language processing for large-scale quality metric data extraction in colonoscopy reports.Gastrointest Endosc. 2021; 93: 750-757Abstract Full Text Full Text PDF PubMed Scopus (10) Google Scholar conducted their study in a large academic medical center, where AI technologies seem to work the best. GI endoscopy reporting systems and electronic healthcare records outside reference centers are heterogeneous and, if not outdated, surely not up to speed for ease in data subtraction. Therefore, external validation will be crucial to assess the robustness of their findings and map out impediments for implementing AI/OCR/NLP into daily endoscopy practices. As we are speeding down a path of human-robot/AI interface8Mori Y. Kudo S.E. Misawa M. Can artificial intelligence standardise colonoscopy quality?.Lancet Gastroenterol Hepatol. 2020; 5: 331-332Abstract Full Text Full Text PDF PubMed Scopus (3) Google Scholar in the provision of GI endoscopy, we shall not forget the patients’ perspective on GI screening with a preference toward noninvasive options. With these in mind, it will be ignominious not to consider jumping ahead with new technologies and keep thinking outside our daily “boxes.” Dr Koulaouzidis is a cofounder of AJM Medkicaps Ltd and iCERV Ltd and a consultant for Jinshan. He is also the recipient of a grant from GivenImaging Ltd; of material support for clinical research from SynMed/Intromedic; of honoraria and lecture fees from Jinshan, Dr FalkPharma UK, and Ferring; and of educational travel support from Aquilant, Jinshan, Dr FalkPharma, Almirall, and Ferring; and a participant in advisory board meetings for Tillots, Ankon, and Dr FalkPharmaUK. The other authors disclosed no financial relationships." @default.
- W3200633654 created "2021-09-27" @default.
- W3200633654 creator A5004878464 @default.
- W3200633654 creator A5006808202 @default.
- W3200633654 creator A5065689662 @default.
- W3200633654 date "2021-10-01" @default.
- W3200633654 modified "2023-09-26" @default.
- W3200633654 title "Artificial intelligence or colonoscopy quality the likes of which have never been seen" @default.
- W3200633654 cites W2980098811 @default.
- W3200633654 cites W3000865557 @default.
- W3200633654 cites W3035996746 @default.
- W3200633654 cites W3036272577 @default.
- W3200633654 cites W3081518866 @default.
- W3200633654 cites W3094709669 @default.
- W3200633654 cites W3133217852 @default.
- W3200633654 doi "https://doi.org/10.1016/j.gie.2021.05.007" @default.
- W3200633654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34530974" @default.
- W3200633654 hasPublicationYear "2021" @default.
- W3200633654 type Work @default.
- W3200633654 sameAs 3200633654 @default.
- W3200633654 citedByCount "0" @default.
- W3200633654 crossrefType "journal-article" @default.
- W3200633654 hasAuthorship W3200633654A5004878464 @default.
- W3200633654 hasAuthorship W3200633654A5006808202 @default.
- W3200633654 hasAuthorship W3200633654A5065689662 @default.
- W3200633654 hasBestOaLocation W32006336541 @default.
- W3200633654 hasConcept C111472728 @default.
- W3200633654 hasConcept C121608353 @default.
- W3200633654 hasConcept C126322002 @default.
- W3200633654 hasConcept C138885662 @default.
- W3200633654 hasConcept C154945302 @default.
- W3200633654 hasConcept C17744445 @default.
- W3200633654 hasConcept C199539241 @default.
- W3200633654 hasConcept C204321447 @default.
- W3200633654 hasConcept C23123220 @default.
- W3200633654 hasConcept C2524010 @default.
- W3200633654 hasConcept C2778435480 @default.
- W3200633654 hasConcept C2779473830 @default.
- W3200633654 hasConcept C2779530757 @default.
- W3200633654 hasConcept C2780861071 @default.
- W3200633654 hasConcept C33923547 @default.
- W3200633654 hasConcept C41008148 @default.
- W3200633654 hasConcept C526805850 @default.
- W3200633654 hasConcept C71924100 @default.
- W3200633654 hasConcept C83867959 @default.
- W3200633654 hasConceptScore W3200633654C111472728 @default.
- W3200633654 hasConceptScore W3200633654C121608353 @default.
- W3200633654 hasConceptScore W3200633654C126322002 @default.
- W3200633654 hasConceptScore W3200633654C138885662 @default.
- W3200633654 hasConceptScore W3200633654C154945302 @default.
- W3200633654 hasConceptScore W3200633654C17744445 @default.
- W3200633654 hasConceptScore W3200633654C199539241 @default.
- W3200633654 hasConceptScore W3200633654C204321447 @default.
- W3200633654 hasConceptScore W3200633654C23123220 @default.
- W3200633654 hasConceptScore W3200633654C2524010 @default.
- W3200633654 hasConceptScore W3200633654C2778435480 @default.
- W3200633654 hasConceptScore W3200633654C2779473830 @default.
- W3200633654 hasConceptScore W3200633654C2779530757 @default.
- W3200633654 hasConceptScore W3200633654C2780861071 @default.
- W3200633654 hasConceptScore W3200633654C33923547 @default.
- W3200633654 hasConceptScore W3200633654C41008148 @default.
- W3200633654 hasConceptScore W3200633654C526805850 @default.
- W3200633654 hasConceptScore W3200633654C71924100 @default.
- W3200633654 hasConceptScore W3200633654C83867959 @default.
- W3200633654 hasIssue "4" @default.
- W3200633654 hasLocation W32006336541 @default.
- W3200633654 hasLocation W32006336542 @default.
- W3200633654 hasOpenAccess W3200633654 @default.
- W3200633654 hasPrimaryLocation W32006336541 @default.
- W3200633654 hasRelatedWork W2004700394 @default.
- W3200633654 hasRelatedWork W2069858699 @default.
- W3200633654 hasRelatedWork W2086392903 @default.
- W3200633654 hasRelatedWork W2170272972 @default.
- W3200633654 hasRelatedWork W2217200097 @default.
- W3200633654 hasRelatedWork W2425239049 @default.
- W3200633654 hasRelatedWork W2748952813 @default.
- W3200633654 hasRelatedWork W2899084033 @default.
- W3200633654 hasRelatedWork W3020811650 @default.
- W3200633654 hasRelatedWork W3107474891 @default.
- W3200633654 hasVolume "94" @default.
- W3200633654 isParatext "false" @default.
- W3200633654 isRetracted "false" @default.
- W3200633654 magId "3200633654" @default.
- W3200633654 workType "article" @default.