Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200640897> ?p ?o ?g. }
- W3200640897 endingPage "124894" @default.
- W3200640897 startingPage "124894" @default.
- W3200640897 abstract "Aggregate size is usually measured by manual sampling and sieving. Machine vision techniques can provide fast, non-invasive measurement. However, the traditional imaging method using a single size descriptor to discriminate different sieve-size classes of coarse aggregates might not yield high-precision classification results. To determine the optimum supervised machine learning model for coarse aggregates sieve-size measurement, 17 methods were evaluated and compared. To train our model, a new dataset named MFCA27 (Multiple Features of Coarse Aggregate 27) was introduced, which contains 27 features of aggregates based on aggregate three-dimensional (3D) top-surface object. In addition, a feature selection approach for investigating how accuracy varied with the datasets under different feature sets was developed, where feature selection was performed according to the impurity-based feature importance score measured using an extremely randomized tree model. Experiments demonstrated that the Gaussian process classifier (GPC) was the best-performing method on the datasets with two- or three-dimensional (2D/3D) feature sets in terms of accuracy and robustness. The results also showed that, compared with the traditional aggregate sieve-size measurement method, which is based on a single size descriptor, GPC can achieve an accuracy of 95.06% on the test dataset of MFCA27 in the aggregate sieve-size class measurement task." @default.
- W3200640897 created "2021-09-27" @default.
- W3200640897 creator A5000432967 @default.
- W3200640897 creator A5009367111 @default.
- W3200640897 creator A5028952393 @default.
- W3200640897 creator A5045785170 @default.
- W3200640897 creator A5053577656 @default.
- W3200640897 creator A5070359533 @default.
- W3200640897 creator A5091410266 @default.
- W3200640897 date "2021-11-01" @default.
- W3200640897 modified "2023-09-30" @default.
- W3200640897 title "Assessment of importance-based machine learning feature selection methods for aggregate size distribution measurement in a 3D binocular vision system" @default.
- W3200640897 cites W1964899496 @default.
- W3200640897 cites W1996257806 @default.
- W3200640897 cites W1999315528 @default.
- W3200640897 cites W2037142383 @default.
- W3200640897 cites W2047414936 @default.
- W3200640897 cites W2057995542 @default.
- W3200640897 cites W2062467613 @default.
- W3200640897 cites W2065133329 @default.
- W3200640897 cites W2080229345 @default.
- W3200640897 cites W2168018510 @default.
- W3200640897 cites W2170505850 @default.
- W3200640897 cites W2767525859 @default.
- W3200640897 cites W2775194089 @default.
- W3200640897 cites W2791315675 @default.
- W3200640897 cites W2793506412 @default.
- W3200640897 cites W2801223698 @default.
- W3200640897 cites W2883688479 @default.
- W3200640897 cites W2900019775 @default.
- W3200640897 cites W2903880955 @default.
- W3200640897 cites W2907535837 @default.
- W3200640897 cites W2912299533 @default.
- W3200640897 cites W2919115771 @default.
- W3200640897 cites W2933374832 @default.
- W3200640897 cites W2940195051 @default.
- W3200640897 cites W2943177046 @default.
- W3200640897 cites W2975256032 @default.
- W3200640897 cites W3009260779 @default.
- W3200640897 cites W3014203273 @default.
- W3200640897 cites W3015705014 @default.
- W3200640897 cites W3026412431 @default.
- W3200640897 cites W3038395014 @default.
- W3200640897 cites W3051014806 @default.
- W3200640897 cites W3091958964 @default.
- W3200640897 doi "https://doi.org/10.1016/j.conbuildmat.2021.124894" @default.
- W3200640897 hasPublicationYear "2021" @default.
- W3200640897 type Work @default.
- W3200640897 sameAs 3200640897 @default.
- W3200640897 citedByCount "5" @default.
- W3200640897 countsByYear W32006408972022 @default.
- W3200640897 countsByYear W32006408972023 @default.
- W3200640897 crossrefType "journal-article" @default.
- W3200640897 hasAuthorship W3200640897A5000432967 @default.
- W3200640897 hasAuthorship W3200640897A5009367111 @default.
- W3200640897 hasAuthorship W3200640897A5028952393 @default.
- W3200640897 hasAuthorship W3200640897A5045785170 @default.
- W3200640897 hasAuthorship W3200640897A5053577656 @default.
- W3200640897 hasAuthorship W3200640897A5070359533 @default.
- W3200640897 hasAuthorship W3200640897A5091410266 @default.
- W3200640897 hasConcept C104317684 @default.
- W3200640897 hasConcept C114614502 @default.
- W3200640897 hasConcept C119857082 @default.
- W3200640897 hasConcept C138885662 @default.
- W3200640897 hasConcept C148483581 @default.
- W3200640897 hasConcept C153180895 @default.
- W3200640897 hasConcept C154945302 @default.
- W3200640897 hasConcept C159985019 @default.
- W3200640897 hasConcept C17732976 @default.
- W3200640897 hasConcept C185592680 @default.
- W3200640897 hasConcept C192562407 @default.
- W3200640897 hasConcept C2776401178 @default.
- W3200640897 hasConcept C33923547 @default.
- W3200640897 hasConcept C41008148 @default.
- W3200640897 hasConcept C41895202 @default.
- W3200640897 hasConcept C4679612 @default.
- W3200640897 hasConcept C55493867 @default.
- W3200640897 hasConcept C63479239 @default.
- W3200640897 hasConceptScore W3200640897C104317684 @default.
- W3200640897 hasConceptScore W3200640897C114614502 @default.
- W3200640897 hasConceptScore W3200640897C119857082 @default.
- W3200640897 hasConceptScore W3200640897C138885662 @default.
- W3200640897 hasConceptScore W3200640897C148483581 @default.
- W3200640897 hasConceptScore W3200640897C153180895 @default.
- W3200640897 hasConceptScore W3200640897C154945302 @default.
- W3200640897 hasConceptScore W3200640897C159985019 @default.
- W3200640897 hasConceptScore W3200640897C17732976 @default.
- W3200640897 hasConceptScore W3200640897C185592680 @default.
- W3200640897 hasConceptScore W3200640897C192562407 @default.
- W3200640897 hasConceptScore W3200640897C2776401178 @default.
- W3200640897 hasConceptScore W3200640897C33923547 @default.
- W3200640897 hasConceptScore W3200640897C41008148 @default.
- W3200640897 hasConceptScore W3200640897C41895202 @default.
- W3200640897 hasConceptScore W3200640897C4679612 @default.
- W3200640897 hasConceptScore W3200640897C55493867 @default.
- W3200640897 hasConceptScore W3200640897C63479239 @default.
- W3200640897 hasLocation W32006408971 @default.
- W3200640897 hasOpenAccess W3200640897 @default.