Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200677777> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3200677777 abstract "Short text clustering is challenging in the field of Natural Language Processing (NLP) since it is hard to learn the discriminative representations with limited information. In this paper, fused multi-embedded features are employed to enhance the representations of short texts. Then, a denoising autoencoder with an attention layer is adopted to extract low-dimensional features from the multi-embeddings against the disturbance of noisy texts. Furthermore, we propose a novel distribution estimation with jointly utilizing soft cluster assignment and the prior target distribution transition to better fine-tune the encoder. Combining the above work, we propose a deep multi-embedded self-supervised model(DMESSM) for short text clustering. We compare our DMESSM with the state-of-the-art methods in head-to-head comparisons on benchmark datasets, which indicates that our method outperforms them." @default.
- W3200677777 created "2021-09-27" @default.
- W3200677777 creator A5001973434 @default.
- W3200677777 creator A5003850660 @default.
- W3200677777 creator A5039766174 @default.
- W3200677777 creator A5062990010 @default.
- W3200677777 creator A5068951778 @default.
- W3200677777 date "2021-01-01" @default.
- W3200677777 modified "2023-10-18" @default.
- W3200677777 title "Short Text Clustering with a Deep Multi-embedded Self-supervised Model" @default.
- W3200677777 cites W1965555277 @default.
- W3200677777 cites W2048195127 @default.
- W3200677777 cites W2061922307 @default.
- W3200677777 cites W2100495367 @default.
- W3200677777 cites W2120699290 @default.
- W3200677777 cites W2250539671 @default.
- W3200677777 cites W2251410829 @default.
- W3200677777 cites W2514776376 @default.
- W3200677777 cites W2963087041 @default.
- W3200677777 cites W2969521304 @default.
- W3200677777 cites W2970641574 @default.
- W3200677777 cites W3034198728 @default.
- W3200677777 cites W3035983125 @default.
- W3200677777 doi "https://doi.org/10.1007/978-3-030-86383-8_12" @default.
- W3200677777 hasPublicationYear "2021" @default.
- W3200677777 type Work @default.
- W3200677777 sameAs 3200677777 @default.
- W3200677777 citedByCount "0" @default.
- W3200677777 crossrefType "book-chapter" @default.
- W3200677777 hasAuthorship W3200677777A5001973434 @default.
- W3200677777 hasAuthorship W3200677777A5003850660 @default.
- W3200677777 hasAuthorship W3200677777A5039766174 @default.
- W3200677777 hasAuthorship W3200677777A5062990010 @default.
- W3200677777 hasAuthorship W3200677777A5068951778 @default.
- W3200677777 hasConcept C101738243 @default.
- W3200677777 hasConcept C108583219 @default.
- W3200677777 hasConcept C111919701 @default.
- W3200677777 hasConcept C118505674 @default.
- W3200677777 hasConcept C119857082 @default.
- W3200677777 hasConcept C13280743 @default.
- W3200677777 hasConcept C153180895 @default.
- W3200677777 hasConcept C154945302 @default.
- W3200677777 hasConcept C185798385 @default.
- W3200677777 hasConcept C202444582 @default.
- W3200677777 hasConcept C204321447 @default.
- W3200677777 hasConcept C205649164 @default.
- W3200677777 hasConcept C33923547 @default.
- W3200677777 hasConcept C41008148 @default.
- W3200677777 hasConcept C73555534 @default.
- W3200677777 hasConcept C9652623 @default.
- W3200677777 hasConcept C97931131 @default.
- W3200677777 hasConceptScore W3200677777C101738243 @default.
- W3200677777 hasConceptScore W3200677777C108583219 @default.
- W3200677777 hasConceptScore W3200677777C111919701 @default.
- W3200677777 hasConceptScore W3200677777C118505674 @default.
- W3200677777 hasConceptScore W3200677777C119857082 @default.
- W3200677777 hasConceptScore W3200677777C13280743 @default.
- W3200677777 hasConceptScore W3200677777C153180895 @default.
- W3200677777 hasConceptScore W3200677777C154945302 @default.
- W3200677777 hasConceptScore W3200677777C185798385 @default.
- W3200677777 hasConceptScore W3200677777C202444582 @default.
- W3200677777 hasConceptScore W3200677777C204321447 @default.
- W3200677777 hasConceptScore W3200677777C205649164 @default.
- W3200677777 hasConceptScore W3200677777C33923547 @default.
- W3200677777 hasConceptScore W3200677777C41008148 @default.
- W3200677777 hasConceptScore W3200677777C73555534 @default.
- W3200677777 hasConceptScore W3200677777C9652623 @default.
- W3200677777 hasConceptScore W3200677777C97931131 @default.
- W3200677777 hasLocation W32006777771 @default.
- W3200677777 hasOpenAccess W3200677777 @default.
- W3200677777 hasPrimaryLocation W32006777771 @default.
- W3200677777 hasRelatedWork W14757628 @default.
- W3200677777 hasRelatedWork W2873872 @default.
- W3200677777 hasRelatedWork W5405742 @default.
- W3200677777 hasRelatedWork W5542932 @default.
- W3200677777 hasRelatedWork W6836841 @default.
- W3200677777 hasRelatedWork W7724241 @default.
- W3200677777 hasRelatedWork W7857228 @default.
- W3200677777 hasRelatedWork W8197146 @default.
- W3200677777 hasRelatedWork W8788258 @default.
- W3200677777 hasRelatedWork W9190101 @default.
- W3200677777 isParatext "false" @default.
- W3200677777 isRetracted "false" @default.
- W3200677777 magId "3200677777" @default.
- W3200677777 workType "book-chapter" @default.