Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200718357> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3200718357 abstract "With the continuous expansion of cloud computing market, the problem of low utilization rate of cloud computing resource has become increasingly prominent, because cloud computing vendors can not schedule a large number of server cluster effectively as before. Improving the utilization rate of cloud resources can not only improve the net profit of cloud computing manufacturers, but also reduce the time cost and economic cost of cloud computing users. In addition to resource scheduling, the current research on cloud workflow load is still focused on single task or single instance prediction, and even the data sets used are simulation data. This paper aims to predict workload of cloud workflow resources to make the cloud computing resources get better scheduling, and ultimately facilitate all relevant personnel in the cloud computing market. Firstly, compared with task and single instance, cloud workflow can get more context information. Secondly, in order to make this research more practical, this paper selects Alibaba cluster data V2018 released by Alibaba in 2018 as our research object. Thirdly, based on the graph structure characteristics of cloud computing workflow, this paper selects the Graph Neural Network (GNN) architecture which closely fits the graph structure to predict the load of cloud computing workflow, and specifically selects the homogeneous Graph Convolution Neural Network and Graph Attention Neural Network and heterogeneous GCN as our prediction algorithm. And it describes how cloud workflow is modeled as homogeneous graph and heterogeneous graph in detail. Finally, the algorithm in GNN is used to classify and predict Ali data with workflow length ranges from 4 to 12 separately and combined, and predicts the last and penultimate tasks of each length workflow. Besides, all the data from 4 to 12 are combined into one data to predict the last and penultimate tasks." @default.
- W3200718357 created "2021-09-27" @default.
- W3200718357 creator A5008752752 @default.
- W3200718357 creator A5033621287 @default.
- W3200718357 creator A5054659240 @default.
- W3200718357 date "2021-01-01" @default.
- W3200718357 modified "2023-09-23" @default.
- W3200718357 title "Workload Prediction of Cloud Workflow Based on Graph Neural Network" @default.
- W3200718357 cites W1904464160 @default.
- W3200718357 cites W1967049382 @default.
- W3200718357 cites W1977556410 @default.
- W3200718357 cites W1990056308 @default.
- W3200718357 cites W1998752664 @default.
- W3200718357 cites W2025577327 @default.
- W3200718357 cites W2034405392 @default.
- W3200718357 cites W2040466547 @default.
- W3200718357 cites W2041296207 @default.
- W3200718357 cites W2052294061 @default.
- W3200718357 cites W2075422010 @default.
- W3200718357 cites W2076063813 @default.
- W3200718357 cites W2087656234 @default.
- W3200718357 cites W2104725470 @default.
- W3200718357 cites W2114044285 @default.
- W3200718357 cites W2116341502 @default.
- W3200718357 cites W2122999882 @default.
- W3200718357 cites W2271772831 @default.
- W3200718357 cites W2412853042 @default.
- W3200718357 cites W2558460151 @default.
- W3200718357 cites W2579543205 @default.
- W3200718357 cites W2764100055 @default.
- W3200718357 cites W2782674619 @default.
- W3200718357 cites W2796189583 @default.
- W3200718357 cites W2802749833 @default.
- W3200718357 cites W3089053844 @default.
- W3200718357 cites W4239510810 @default.
- W3200718357 cites W4240268957 @default.
- W3200718357 cites W4249970585 @default.
- W3200718357 doi "https://doi.org/10.1007/978-3-030-87571-8_15" @default.
- W3200718357 hasPublicationYear "2021" @default.
- W3200718357 type Work @default.
- W3200718357 sameAs 3200718357 @default.
- W3200718357 citedByCount "5" @default.
- W3200718357 countsByYear W32007183572022 @default.
- W3200718357 countsByYear W32007183572023 @default.
- W3200718357 crossrefType "book-chapter" @default.
- W3200718357 hasAuthorship W3200718357A5008752752 @default.
- W3200718357 hasAuthorship W3200718357A5033621287 @default.
- W3200718357 hasAuthorship W3200718357A5054659240 @default.
- W3200718357 hasConcept C111919701 @default.
- W3200718357 hasConcept C120314980 @default.
- W3200718357 hasConcept C140824633 @default.
- W3200718357 hasConcept C162324750 @default.
- W3200718357 hasConcept C177212765 @default.
- W3200718357 hasConcept C206729178 @default.
- W3200718357 hasConcept C21547014 @default.
- W3200718357 hasConcept C41008148 @default.
- W3200718357 hasConcept C77088390 @default.
- W3200718357 hasConcept C79974875 @default.
- W3200718357 hasConceptScore W3200718357C111919701 @default.
- W3200718357 hasConceptScore W3200718357C120314980 @default.
- W3200718357 hasConceptScore W3200718357C140824633 @default.
- W3200718357 hasConceptScore W3200718357C162324750 @default.
- W3200718357 hasConceptScore W3200718357C177212765 @default.
- W3200718357 hasConceptScore W3200718357C206729178 @default.
- W3200718357 hasConceptScore W3200718357C21547014 @default.
- W3200718357 hasConceptScore W3200718357C41008148 @default.
- W3200718357 hasConceptScore W3200718357C77088390 @default.
- W3200718357 hasConceptScore W3200718357C79974875 @default.
- W3200718357 hasLocation W32007183571 @default.
- W3200718357 hasOpenAccess W3200718357 @default.
- W3200718357 hasPrimaryLocation W32007183571 @default.
- W3200718357 hasRelatedWork W10154200 @default.
- W3200718357 hasRelatedWork W12804533 @default.
- W3200718357 hasRelatedWork W15106597 @default.
- W3200718357 hasRelatedWork W2791332 @default.
- W3200718357 hasRelatedWork W3623864 @default.
- W3200718357 hasRelatedWork W3649010 @default.
- W3200718357 hasRelatedWork W6915020 @default.
- W3200718357 hasRelatedWork W8317513 @default.
- W3200718357 hasRelatedWork W9864111 @default.
- W3200718357 hasRelatedWork W9942251 @default.
- W3200718357 isParatext "false" @default.
- W3200718357 isRetracted "false" @default.
- W3200718357 magId "3200718357" @default.
- W3200718357 workType "book-chapter" @default.