Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200724689> ?p ?o ?g. }
- W3200724689 endingPage "582" @default.
- W3200724689 startingPage "572" @default.
- W3200724689 abstract "Current prediction models for early recurrence of hepatocellular carcinoma (HCC) after surgical resection remain unsatisfactory. The aim of this study was to develop evolutionary learning-derived prediction models with interpretability using both clinical and radiomic features to predict early recurrence of HCC after surgical resection.Consecutive 517 HCC patients receiving surgical resection with available contrast-enhanced computed tomography (CECT) images before resection were retrospectively enrolled. Patients were randomly assigned to a training set (n = 362) and a test set (n = 155) in a ratio of 7:3. Tumor segmentation of all CECT images including noncontrast phase, arterial phase, and portal venous phase was manually performed for radiomic feature extraction. A novel evolutionary learning-derived method called genetic algorithm for predicting recurrence after surgery of liver cancer (GARSL) was proposed to design prediction models for early recurrence of HCC within 2 years after surgery.A total of 143 features, including 26 preoperative clinical features, 5 postoperative pathological features, and 112 radiomic features were used to develop GARSL preoperative and postoperative models. The area under the receiver operating characteristic curves (AUCs) for early recurrence of HCC within 2 years were 0.781 and 0.767, respectively, in the training set, and 0.739 and 0.741, respectively, in the test set. The accuracy of GARSL models derived from the evolutionary learning method was significantly better than models derived from other well-known machine learning methods or the early recurrence after surgery for liver tumor (ERASL) preoperative (AUC = 0.687, p < 0.001 vs. GARSL preoperative) and ERASL postoperative (AUC = 0.688, p < 0.001 vs. GARSL postoperative) models using clinical features only.The GARSL models using both clinical and radiomic features significantly improved the accuracy to predict early recurrence of HCC after surgical resection, which was significantly better than other well-known machine learning-derived models and currently available clinical models." @default.
- W3200724689 created "2021-09-27" @default.
- W3200724689 creator A5007171835 @default.
- W3200724689 creator A5010600448 @default.
- W3200724689 creator A5026090288 @default.
- W3200724689 creator A5034535558 @default.
- W3200724689 creator A5036469662 @default.
- W3200724689 creator A5048521134 @default.
- W3200724689 creator A5056241314 @default.
- W3200724689 creator A5057044812 @default.
- W3200724689 creator A5070683059 @default.
- W3200724689 creator A5074950782 @default.
- W3200724689 creator A5075730953 @default.
- W3200724689 creator A5086570260 @default.
- W3200724689 creator A5087320799 @default.
- W3200724689 creator A5091691544 @default.
- W3200724689 date "2021-01-01" @default.
- W3200724689 modified "2023-10-01" @default.
- W3200724689 title "Evolutionary Learning-Derived Clinical-Radiomic Models for Predicting Early Recurrence of Hepatocellular Carcinoma after Resection" @default.
- W3200724689 cites W1823035069 @default.
- W3200724689 cites W1981900811 @default.
- W3200724689 cites W2072554662 @default.
- W3200724689 cites W2081871084 @default.
- W3200724689 cites W2119190881 @default.
- W3200724689 cites W2125735075 @default.
- W3200724689 cites W2125983734 @default.
- W3200724689 cites W2135893370 @default.
- W3200724689 cites W2163403599 @default.
- W3200724689 cites W2167485812 @default.
- W3200724689 cites W2277004004 @default.
- W3200724689 cites W2591717879 @default.
- W3200724689 cites W2740143077 @default.
- W3200724689 cites W2751538714 @default.
- W3200724689 cites W2763355946 @default.
- W3200724689 cites W2783788260 @default.
- W3200724689 cites W2890149982 @default.
- W3200724689 cites W2898156042 @default.
- W3200724689 cites W2915597952 @default.
- W3200724689 cites W2921899076 @default.
- W3200724689 cites W2923957025 @default.
- W3200724689 cites W2934399013 @default.
- W3200724689 cites W2951209146 @default.
- W3200724689 cites W2985583390 @default.
- W3200724689 cites W2999237217 @default.
- W3200724689 cites W3007100994 @default.
- W3200724689 cites W3014713533 @default.
- W3200724689 cites W3023997891 @default.
- W3200724689 cites W3024642131 @default.
- W3200724689 cites W3039606491 @default.
- W3200724689 cites W3043909624 @default.
- W3200724689 cites W3082687253 @default.
- W3200724689 cites W3119510676 @default.
- W3200724689 cites W3128290931 @default.
- W3200724689 cites W3146908429 @default.
- W3200724689 cites W3166292277 @default.
- W3200724689 doi "https://doi.org/10.1159/000518728" @default.
- W3200724689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34950180" @default.
- W3200724689 hasPublicationYear "2021" @default.
- W3200724689 type Work @default.
- W3200724689 sameAs 3200724689 @default.
- W3200724689 citedByCount "15" @default.
- W3200724689 countsByYear W32007246892022 @default.
- W3200724689 countsByYear W32007246892023 @default.
- W3200724689 crossrefType "journal-article" @default.
- W3200724689 hasAuthorship W3200724689A5007171835 @default.
- W3200724689 hasAuthorship W3200724689A5010600448 @default.
- W3200724689 hasAuthorship W3200724689A5026090288 @default.
- W3200724689 hasAuthorship W3200724689A5034535558 @default.
- W3200724689 hasAuthorship W3200724689A5036469662 @default.
- W3200724689 hasAuthorship W3200724689A5048521134 @default.
- W3200724689 hasAuthorship W3200724689A5056241314 @default.
- W3200724689 hasAuthorship W3200724689A5057044812 @default.
- W3200724689 hasAuthorship W3200724689A5070683059 @default.
- W3200724689 hasAuthorship W3200724689A5074950782 @default.
- W3200724689 hasAuthorship W3200724689A5075730953 @default.
- W3200724689 hasAuthorship W3200724689A5086570260 @default.
- W3200724689 hasAuthorship W3200724689A5087320799 @default.
- W3200724689 hasAuthorship W3200724689A5091691544 @default.
- W3200724689 hasBestOaLocation W32007246891 @default.
- W3200724689 hasConcept C126322002 @default.
- W3200724689 hasConcept C126838900 @default.
- W3200724689 hasConcept C141071460 @default.
- W3200724689 hasConcept C2778019345 @default.
- W3200724689 hasConcept C58471807 @default.
- W3200724689 hasConcept C71924100 @default.
- W3200724689 hasConceptScore W3200724689C126322002 @default.
- W3200724689 hasConceptScore W3200724689C126838900 @default.
- W3200724689 hasConceptScore W3200724689C141071460 @default.
- W3200724689 hasConceptScore W3200724689C2778019345 @default.
- W3200724689 hasConceptScore W3200724689C58471807 @default.
- W3200724689 hasConceptScore W3200724689C71924100 @default.
- W3200724689 hasIssue "6" @default.
- W3200724689 hasLocation W32007246891 @default.
- W3200724689 hasLocation W32007246892 @default.
- W3200724689 hasLocation W32007246893 @default.
- W3200724689 hasOpenAccess W3200724689 @default.
- W3200724689 hasPrimaryLocation W32007246891 @default.
- W3200724689 hasRelatedWork W2002120878 @default.