Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200743803> ?p ?o ?g. }
- W3200743803 endingPage "16" @default.
- W3200743803 startingPage "1" @default.
- W3200743803 abstract "There are many factors that affect short-term load forecasting performance, such as weather and holidays. However, most of the existing load forecasting models lack more detailed considerations for some special days. In this paper, the applicability of the bagged regression trees (BRT) model combined with eight variables is investigated to forecast short-term load in Qingdao. The comparative experiments show that the accuracy and speed of forecasting have some improvements using the BRT than the artificial neural network (ANN). Then, an indicator variable is newly proposed to capture the abnormal information during special days, which include national statutory holidays, bridging days, and proximity days. The BRT model combined with this indicator variable is tested on the load series measured in 2018. Experiments demonstrate that the improved model generates more accurate predictive results than BRT model combined with previously variables on special days." @default.
- W3200743803 created "2021-09-27" @default.
- W3200743803 creator A5008637032 @default.
- W3200743803 creator A5018013317 @default.
- W3200743803 creator A5028736010 @default.
- W3200743803 creator A5035277052 @default.
- W3200743803 creator A5047221078 @default.
- W3200743803 date "2021-09-15" @default.
- W3200743803 modified "2023-10-13" @default.
- W3200743803 title "The Short-Term Load Forecasting for Special Days Based on Bagged Regression Trees in Qingdao, China" @default.
- W3200743803 cites W1541843935 @default.
- W3200743803 cites W1963702413 @default.
- W3200743803 cites W1973075395 @default.
- W3200743803 cites W1979683999 @default.
- W3200743803 cites W2001842434 @default.
- W3200743803 cites W2013331220 @default.
- W3200743803 cites W2020416411 @default.
- W3200743803 cites W2022692538 @default.
- W3200743803 cites W2038843869 @default.
- W3200743803 cites W2076163358 @default.
- W3200743803 cites W2098207764 @default.
- W3200743803 cites W2105916576 @default.
- W3200743803 cites W2107779924 @default.
- W3200743803 cites W2124058921 @default.
- W3200743803 cites W2135695572 @default.
- W3200743803 cites W2148239836 @default.
- W3200743803 cites W2152271106 @default.
- W3200743803 cites W2156110830 @default.
- W3200743803 cites W2185358055 @default.
- W3200743803 cites W2271974312 @default.
- W3200743803 cites W2551161908 @default.
- W3200743803 cites W2602283702 @default.
- W3200743803 cites W2615291466 @default.
- W3200743803 cites W2763926615 @default.
- W3200743803 cites W2764791077 @default.
- W3200743803 cites W2887874040 @default.
- W3200743803 cites W2928270761 @default.
- W3200743803 cites W2963653111 @default.
- W3200743803 cites W2979550546 @default.
- W3200743803 cites W2999323915 @default.
- W3200743803 cites W3015663469 @default.
- W3200743803 cites W3016724855 @default.
- W3200743803 cites W3027003065 @default.
- W3200743803 cites W3051154456 @default.
- W3200743803 cites W3100827172 @default.
- W3200743803 cites W4212883601 @default.
- W3200743803 doi "https://doi.org/10.1155/2021/3693294" @default.
- W3200743803 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8460367" @default.
- W3200743803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34567100" @default.
- W3200743803 hasPublicationYear "2021" @default.
- W3200743803 type Work @default.
- W3200743803 sameAs 3200743803 @default.
- W3200743803 citedByCount "15" @default.
- W3200743803 countsByYear W32007438032021 @default.
- W3200743803 countsByYear W32007438032022 @default.
- W3200743803 countsByYear W32007438032023 @default.
- W3200743803 crossrefType "journal-article" @default.
- W3200743803 hasAuthorship W3200743803A5008637032 @default.
- W3200743803 hasAuthorship W3200743803A5018013317 @default.
- W3200743803 hasAuthorship W3200743803A5028736010 @default.
- W3200743803 hasAuthorship W3200743803A5035277052 @default.
- W3200743803 hasAuthorship W3200743803A5047221078 @default.
- W3200743803 hasBestOaLocation W32007438031 @default.
- W3200743803 hasConcept C105795698 @default.
- W3200743803 hasConcept C119857082 @default.
- W3200743803 hasConcept C121332964 @default.
- W3200743803 hasConcept C134306372 @default.
- W3200743803 hasConcept C149782125 @default.
- W3200743803 hasConcept C152877465 @default.
- W3200743803 hasConcept C154945302 @default.
- W3200743803 hasConcept C182365436 @default.
- W3200743803 hasConcept C27574286 @default.
- W3200743803 hasConcept C33923547 @default.
- W3200743803 hasConcept C41008148 @default.
- W3200743803 hasConcept C48921125 @default.
- W3200743803 hasConcept C50644808 @default.
- W3200743803 hasConcept C61797465 @default.
- W3200743803 hasConcept C62520636 @default.
- W3200743803 hasConcept C83546350 @default.
- W3200743803 hasConceptScore W3200743803C105795698 @default.
- W3200743803 hasConceptScore W3200743803C119857082 @default.
- W3200743803 hasConceptScore W3200743803C121332964 @default.
- W3200743803 hasConceptScore W3200743803C134306372 @default.
- W3200743803 hasConceptScore W3200743803C149782125 @default.
- W3200743803 hasConceptScore W3200743803C152877465 @default.
- W3200743803 hasConceptScore W3200743803C154945302 @default.
- W3200743803 hasConceptScore W3200743803C182365436 @default.
- W3200743803 hasConceptScore W3200743803C27574286 @default.
- W3200743803 hasConceptScore W3200743803C33923547 @default.
- W3200743803 hasConceptScore W3200743803C41008148 @default.
- W3200743803 hasConceptScore W3200743803C48921125 @default.
- W3200743803 hasConceptScore W3200743803C50644808 @default.
- W3200743803 hasConceptScore W3200743803C61797465 @default.
- W3200743803 hasConceptScore W3200743803C62520636 @default.
- W3200743803 hasConceptScore W3200743803C83546350 @default.
- W3200743803 hasFunder F4320324174 @default.
- W3200743803 hasLocation W32007438031 @default.
- W3200743803 hasLocation W32007438032 @default.