Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200765198> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3200765198 abstract "In the last decade, the limitation of the propagation of Wildfire had become a higher necessity. In fact, it is important to optimize the resources used for dislocation to verify the probabilistic signaled fire zones. Hence, using sophisticated and low-cost techniques to sense the previously mentioned zones is highly demanded. Models with high computational necessity are not interesting for real time application. More simple models are requested, to fulfill the desired tasks with an admitted response time. Squeezesegv2 is a model applied initially for LiDAR (Light Detection And Ranging) Point Cloud data segmentation, which gives a high IoU value compared with other state of art architectures. The model was experimented in this paper, it is robust against dropout noise. Experiments were run over RGB pictures of Corsican public French dataset with 1135 RGB images. It is common that highly unbalanced datasets, which is our case, induce high precision low sensitivity. Therefore, several validation measures criterions were adopted to access the performance. In fact, the capability of the model was tested with four different metrics: Accuracy, mean Intersection over Union (IoU), Mean Boundary F1 (BF) Score, and Mean Dice coefficient. The experimental results demonstrate that the trained model, over the Corsican French dataset, with five-fold cross validation procedure can accurately detect the fire flame. The results were collected for different loss function types: Focal loss, Dice and Tversky loss. In general, the given results are very encouraging for further study using deep learning approaches." @default.
- W3200765198 created "2021-09-27" @default.
- W3200765198 creator A5017059603 @default.
- W3200765198 creator A5028959217 @default.
- W3200765198 creator A5087265884 @default.
- W3200765198 date "2021-09-12" @default.
- W3200765198 modified "2023-09-24" @default.
- W3200765198 title "Fire segmentation using a SqueezeSegv2" @default.
- W3200765198 doi "https://doi.org/10.1117/12.2598566" @default.
- W3200765198 hasPublicationYear "2021" @default.
- W3200765198 type Work @default.
- W3200765198 sameAs 3200765198 @default.
- W3200765198 citedByCount "0" @default.
- W3200765198 crossrefType "proceedings-article" @default.
- W3200765198 hasAuthorship W3200765198A5017059603 @default.
- W3200765198 hasAuthorship W3200765198A5028959217 @default.
- W3200765198 hasAuthorship W3200765198A5087265884 @default.
- W3200765198 hasConcept C105795698 @default.
- W3200765198 hasConcept C115051666 @default.
- W3200765198 hasConcept C119857082 @default.
- W3200765198 hasConcept C127413603 @default.
- W3200765198 hasConcept C131979681 @default.
- W3200765198 hasConcept C146849305 @default.
- W3200765198 hasConcept C146978453 @default.
- W3200765198 hasConcept C153180895 @default.
- W3200765198 hasConcept C154945302 @default.
- W3200765198 hasConcept C21200559 @default.
- W3200765198 hasConcept C22029948 @default.
- W3200765198 hasConcept C24326235 @default.
- W3200765198 hasConcept C33923547 @default.
- W3200765198 hasConcept C41008148 @default.
- W3200765198 hasConcept C49937458 @default.
- W3200765198 hasConcept C64543145 @default.
- W3200765198 hasConcept C76155785 @default.
- W3200765198 hasConcept C774472 @default.
- W3200765198 hasConcept C89600930 @default.
- W3200765198 hasConceptScore W3200765198C105795698 @default.
- W3200765198 hasConceptScore W3200765198C115051666 @default.
- W3200765198 hasConceptScore W3200765198C119857082 @default.
- W3200765198 hasConceptScore W3200765198C127413603 @default.
- W3200765198 hasConceptScore W3200765198C131979681 @default.
- W3200765198 hasConceptScore W3200765198C146849305 @default.
- W3200765198 hasConceptScore W3200765198C146978453 @default.
- W3200765198 hasConceptScore W3200765198C153180895 @default.
- W3200765198 hasConceptScore W3200765198C154945302 @default.
- W3200765198 hasConceptScore W3200765198C21200559 @default.
- W3200765198 hasConceptScore W3200765198C22029948 @default.
- W3200765198 hasConceptScore W3200765198C24326235 @default.
- W3200765198 hasConceptScore W3200765198C33923547 @default.
- W3200765198 hasConceptScore W3200765198C41008148 @default.
- W3200765198 hasConceptScore W3200765198C49937458 @default.
- W3200765198 hasConceptScore W3200765198C64543145 @default.
- W3200765198 hasConceptScore W3200765198C76155785 @default.
- W3200765198 hasConceptScore W3200765198C774472 @default.
- W3200765198 hasConceptScore W3200765198C89600930 @default.
- W3200765198 hasLocation W32007651981 @default.
- W3200765198 hasOpenAccess W3200765198 @default.
- W3200765198 hasPrimaryLocation W32007651981 @default.
- W3200765198 hasRelatedWork W1982685118 @default.
- W3200765198 hasRelatedWork W2130151498 @default.
- W3200765198 hasRelatedWork W2562256921 @default.
- W3200765198 hasRelatedWork W2751665805 @default.
- W3200765198 hasRelatedWork W2904499449 @default.
- W3200765198 hasRelatedWork W2952663681 @default.
- W3200765198 hasRelatedWork W2973136608 @default.
- W3200765198 hasRelatedWork W3108464240 @default.
- W3200765198 hasRelatedWork W3186277820 @default.
- W3200765198 hasRelatedWork W3202579864 @default.
- W3200765198 isParatext "false" @default.
- W3200765198 isRetracted "false" @default.
- W3200765198 magId "3200765198" @default.
- W3200765198 workType "article" @default.