Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200770258> ?p ?o ?g. }
- W3200770258 endingPage "11969" @default.
- W3200770258 startingPage "11960" @default.
- W3200770258 abstract "Speed prediction is a crucial yet complicated task for intelligent transportation systems. The challenge derives from the complex spatiotemporal dependencies of traffic parameters. In the past few years, deep neural networks have achieved the best traffic speed prediction performance. However, most models depend on short-term input sequences to predict short/long-term traffic speed (e.g., predicting speed for the next hour using data from the past hour). These models fail to consider the daily and weekly periodic behavior of traffic. Another problem posed by neural networks is the lack of interpretability as they often operate as “black boxes”. In this paper, an attention-based multi-encoder-decoder (Att-MED) model is proposed to predict traffic speed. The model uses convolutional-LSTMs to capture the spatiotemporal relationship of multiple input sequences, namely short-term, daily and weekly traffic patterns. The model also employs an LSTM to model the output predictions sequentially. Furthermore, attention mechanism is used to weigh the contribution of each traffic sequence towards the output predictions. The proposed network architecture, when trained end-to-end, results in a superior prediction accuracy compared to baseline models. In addition to contributing towards performance, the attention mechanism creates weight values, which when visualized, provide insights into the decision-making process of the neural network, and consequently produce explainable outputs. Att-MED’s extracted attention weights highlight the contribution of daily and weekly periodic input towards speed prediction." @default.
- W3200770258 created "2021-09-27" @default.
- W3200770258 creator A5037147839 @default.
- W3200770258 creator A5040847417 @default.
- W3200770258 creator A5080479612 @default.
- W3200770258 date "2022-08-01" @default.
- W3200770258 modified "2023-10-11" @default.
- W3200770258 title "Utilizing Attention-Based Multi-Encoder-Decoder Neural Networks for Freeway Traffic Speed Prediction" @default.
- W3200770258 cites W1966690449 @default.
- W3200770258 cites W1971757341 @default.
- W3200770258 cites W1973943669 @default.
- W3200770258 cites W2004073866 @default.
- W3200770258 cites W2004353783 @default.
- W3200770258 cites W2019729492 @default.
- W3200770258 cites W2027392238 @default.
- W3200770258 cites W2040297119 @default.
- W3200770258 cites W2062017159 @default.
- W3200770258 cites W2064675550 @default.
- W3200770258 cites W2066377449 @default.
- W3200770258 cites W2069929199 @default.
- W3200770258 cites W2083238230 @default.
- W3200770258 cites W2085592822 @default.
- W3200770258 cites W2097498150 @default.
- W3200770258 cites W2108196201 @default.
- W3200770258 cites W2109764844 @default.
- W3200770258 cites W2111807801 @default.
- W3200770258 cites W2131739422 @default.
- W3200770258 cites W2160507653 @default.
- W3200770258 cites W2171234954 @default.
- W3200770258 cites W2180748755 @default.
- W3200770258 cites W2470641485 @default.
- W3200770258 cites W2533328922 @default.
- W3200770258 cites W2572939427 @default.
- W3200770258 cites W2573587735 @default.
- W3200770258 cites W2575125657 @default.
- W3200770258 cites W2583466634 @default.
- W3200770258 cites W2593182953 @default.
- W3200770258 cites W2775717462 @default.
- W3200770258 cites W2965341826 @default.
- W3200770258 cites W2997848713 @default.
- W3200770258 cites W3006854884 @default.
- W3200770258 cites W3010118086 @default.
- W3200770258 cites W3039628929 @default.
- W3200770258 cites W3120190876 @default.
- W3200770258 doi "https://doi.org/10.1109/tits.2021.3108939" @default.
- W3200770258 hasPublicationYear "2022" @default.
- W3200770258 type Work @default.
- W3200770258 sameAs 3200770258 @default.
- W3200770258 citedByCount "12" @default.
- W3200770258 countsByYear W32007702582022 @default.
- W3200770258 countsByYear W32007702582023 @default.
- W3200770258 crossrefType "journal-article" @default.
- W3200770258 hasAuthorship W3200770258A5037147839 @default.
- W3200770258 hasAuthorship W3200770258A5040847417 @default.
- W3200770258 hasAuthorship W3200770258A5080479612 @default.
- W3200770258 hasConcept C108583219 @default.
- W3200770258 hasConcept C111919701 @default.
- W3200770258 hasConcept C118505674 @default.
- W3200770258 hasConcept C119857082 @default.
- W3200770258 hasConcept C121332964 @default.
- W3200770258 hasConcept C124101348 @default.
- W3200770258 hasConcept C127413603 @default.
- W3200770258 hasConcept C147168706 @default.
- W3200770258 hasConcept C147176958 @default.
- W3200770258 hasConcept C154945302 @default.
- W3200770258 hasConcept C22212356 @default.
- W3200770258 hasConcept C2778112365 @default.
- W3200770258 hasConcept C2781067378 @default.
- W3200770258 hasConcept C2993660032 @default.
- W3200770258 hasConcept C41008148 @default.
- W3200770258 hasConcept C47796450 @default.
- W3200770258 hasConcept C50644808 @default.
- W3200770258 hasConcept C54355233 @default.
- W3200770258 hasConcept C61797465 @default.
- W3200770258 hasConcept C62520636 @default.
- W3200770258 hasConcept C68339613 @default.
- W3200770258 hasConcept C81363708 @default.
- W3200770258 hasConcept C86803240 @default.
- W3200770258 hasConcept C98045186 @default.
- W3200770258 hasConceptScore W3200770258C108583219 @default.
- W3200770258 hasConceptScore W3200770258C111919701 @default.
- W3200770258 hasConceptScore W3200770258C118505674 @default.
- W3200770258 hasConceptScore W3200770258C119857082 @default.
- W3200770258 hasConceptScore W3200770258C121332964 @default.
- W3200770258 hasConceptScore W3200770258C124101348 @default.
- W3200770258 hasConceptScore W3200770258C127413603 @default.
- W3200770258 hasConceptScore W3200770258C147168706 @default.
- W3200770258 hasConceptScore W3200770258C147176958 @default.
- W3200770258 hasConceptScore W3200770258C154945302 @default.
- W3200770258 hasConceptScore W3200770258C22212356 @default.
- W3200770258 hasConceptScore W3200770258C2778112365 @default.
- W3200770258 hasConceptScore W3200770258C2781067378 @default.
- W3200770258 hasConceptScore W3200770258C2993660032 @default.
- W3200770258 hasConceptScore W3200770258C41008148 @default.
- W3200770258 hasConceptScore W3200770258C47796450 @default.
- W3200770258 hasConceptScore W3200770258C50644808 @default.
- W3200770258 hasConceptScore W3200770258C54355233 @default.
- W3200770258 hasConceptScore W3200770258C61797465 @default.