Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200775191> ?p ?o ?g. }
- W3200775191 endingPage "101405" @default.
- W3200775191 startingPage "101405" @default.
- W3200775191 abstract "Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important role in the application of smart manufacturing. This mechanism can provide different levels of pre-diagnosis for machines or components. Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. RUL refers to the estimated useful life remaining before the machine cannot operate after a certain period of operation. This study develops a hybrid data science model based on empirical mode decomposition (EMD), grey relational analysis (GRA), and deep recurrent neural networks (RNN) for the RUL prediction of lithium-ion batteries. The EMD and GRA methods are first adopted to extract the characteristics of time series data. Then, various deep RNNs, including vanilla RNN, gated recurrent unit, long short-term memory network (LSTM), and bidirectional LSTM, are established to forecast state of health (SOH) and the RUL of lithium-ion batteries. Bayesian optimization is also used to find the best hyperparameters of deep RNNs. Experimental results with the lithium-ion batteries data of NASA Ames Prognostics Data Repository show that the proposed hybrid data science model can accurately predict the SOH and RUL of lithium-ion batteries. The LSTM network has the optimal results. The proposed hybrid data science model with multiple artificial intelligence-based technologies also demonstrates critical digital-technology enablers for digital transformation of smart manufacturing and transportation." @default.
- W3200775191 created "2021-09-27" @default.
- W3200775191 creator A5000770190 @default.
- W3200775191 creator A5007469975 @default.
- W3200775191 creator A5033695556 @default.
- W3200775191 creator A5074583144 @default.
- W3200775191 creator A5086034584 @default.
- W3200775191 date "2021-10-01" @default.
- W3200775191 modified "2023-10-11" @default.
- W3200775191 title "Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery" @default.
- W3200775191 cites W2051319254 @default.
- W3200775191 cites W2113380748 @default.
- W3200775191 cites W2345979296 @default.
- W3200775191 cites W2558869916 @default.
- W3200775191 cites W2566728633 @default.
- W3200775191 cites W2617137613 @default.
- W3200775191 cites W2744067593 @default.
- W3200775191 cites W2773549135 @default.
- W3200775191 cites W2790625295 @default.
- W3200775191 cites W2792573670 @default.
- W3200775191 cites W2794103404 @default.
- W3200775191 cites W2810292802 @default.
- W3200775191 cites W2883525675 @default.
- W3200775191 cites W2890169947 @default.
- W3200775191 cites W2915503880 @default.
- W3200775191 cites W2920083100 @default.
- W3200775191 cites W2955134049 @default.
- W3200775191 cites W2960048287 @default.
- W3200775191 cites W2961350108 @default.
- W3200775191 cites W2965733862 @default.
- W3200775191 cites W2975761873 @default.
- W3200775191 cites W2999053608 @default.
- W3200775191 cites W3004848853 @default.
- W3200775191 cites W3007676167 @default.
- W3200775191 cites W3011593554 @default.
- W3200775191 cites W3012075351 @default.
- W3200775191 cites W3012264837 @default.
- W3200775191 cites W3136018460 @default.
- W3200775191 doi "https://doi.org/10.1016/j.aei.2021.101405" @default.
- W3200775191 hasPublicationYear "2021" @default.
- W3200775191 type Work @default.
- W3200775191 sameAs 3200775191 @default.
- W3200775191 citedByCount "40" @default.
- W3200775191 countsByYear W32007751912022 @default.
- W3200775191 countsByYear W32007751912023 @default.
- W3200775191 crossrefType "journal-article" @default.
- W3200775191 hasAuthorship W3200775191A5000770190 @default.
- W3200775191 hasAuthorship W3200775191A5007469975 @default.
- W3200775191 hasAuthorship W3200775191A5033695556 @default.
- W3200775191 hasAuthorship W3200775191A5074583144 @default.
- W3200775191 hasAuthorship W3200775191A5086034584 @default.
- W3200775191 hasConcept C106131492 @default.
- W3200775191 hasConcept C119857082 @default.
- W3200775191 hasConcept C121332964 @default.
- W3200775191 hasConcept C124101348 @default.
- W3200775191 hasConcept C127413603 @default.
- W3200775191 hasConcept C129364497 @default.
- W3200775191 hasConcept C147168706 @default.
- W3200775191 hasConcept C154945302 @default.
- W3200775191 hasConcept C163258240 @default.
- W3200775191 hasConcept C200601418 @default.
- W3200775191 hasConcept C25570617 @default.
- W3200775191 hasConcept C31972630 @default.
- W3200775191 hasConcept C41008148 @default.
- W3200775191 hasConcept C50644808 @default.
- W3200775191 hasConcept C555008776 @default.
- W3200775191 hasConcept C62520636 @default.
- W3200775191 hasConcept C70452415 @default.
- W3200775191 hasConceptScore W3200775191C106131492 @default.
- W3200775191 hasConceptScore W3200775191C119857082 @default.
- W3200775191 hasConceptScore W3200775191C121332964 @default.
- W3200775191 hasConceptScore W3200775191C124101348 @default.
- W3200775191 hasConceptScore W3200775191C127413603 @default.
- W3200775191 hasConceptScore W3200775191C129364497 @default.
- W3200775191 hasConceptScore W3200775191C147168706 @default.
- W3200775191 hasConceptScore W3200775191C154945302 @default.
- W3200775191 hasConceptScore W3200775191C163258240 @default.
- W3200775191 hasConceptScore W3200775191C200601418 @default.
- W3200775191 hasConceptScore W3200775191C25570617 @default.
- W3200775191 hasConceptScore W3200775191C31972630 @default.
- W3200775191 hasConceptScore W3200775191C41008148 @default.
- W3200775191 hasConceptScore W3200775191C50644808 @default.
- W3200775191 hasConceptScore W3200775191C555008776 @default.
- W3200775191 hasConceptScore W3200775191C62520636 @default.
- W3200775191 hasConceptScore W3200775191C70452415 @default.
- W3200775191 hasLocation W32007751911 @default.
- W3200775191 hasOpenAccess W3200775191 @default.
- W3200775191 hasPrimaryLocation W32007751911 @default.
- W3200775191 hasRelatedWork W2028839796 @default.
- W3200775191 hasRelatedWork W2128161665 @default.
- W3200775191 hasRelatedWork W2586143229 @default.
- W3200775191 hasRelatedWork W2786121524 @default.
- W3200775191 hasRelatedWork W2908973203 @default.
- W3200775191 hasRelatedWork W3045935064 @default.
- W3200775191 hasRelatedWork W3160450996 @default.
- W3200775191 hasRelatedWork W4307290295 @default.
- W3200775191 hasRelatedWork W4321486786 @default.
- W3200775191 hasRelatedWork W4385520395 @default.