Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200775896> ?p ?o ?g. }
- W3200775896 endingPage "111404" @default.
- W3200775896 startingPage "111404" @default.
- W3200775896 abstract "The aim of this study is to design a singular fractional order pantograph differential model by using the typical form of the Lane-Emden model. The necessary details of the singular-point, fractional order and shape factor of the designed model are also provided. The numerical solutions of the designed model have been presented using the combination of the fractional Meyer wavelet (FMW) neural networks (NNs) modeling and optimization of global search with genetic algorithm (GA) supported with local search of sequential quadratic programming (SQP), i.e., FMWNN-GASQP. The strength of FMWNN is employed to design an objective function using the differential model along with its initial conditions of the singular fractional order pantograph model. The optimization of this objective function is performed using the integrated competence of GA-SQP. The verification, perfection and authentication of the singular fractional order pantograph model using fractional Meyer computing solver is observed for different cases through comparative studies from the available exact solutions which endorsed its robustness, convergence and stability. Moreover, the statistics observation with necessary explanations further authenticate the performance of the FMWNN-GASQP in terms of accuracy and reliability." @default.
- W3200775896 created "2021-09-27" @default.
- W3200775896 creator A5012641009 @default.
- W3200775896 creator A5020317036 @default.
- W3200775896 creator A5049648837 @default.
- W3200775896 creator A5069175841 @default.
- W3200775896 date "2021-11-01" @default.
- W3200775896 modified "2023-10-17" @default.
- W3200775896 title "Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model" @default.
- W3200775896 cites W1975670568 @default.
- W3200775896 cites W2010372878 @default.
- W3200775896 cites W2029351779 @default.
- W3200775896 cites W2047139403 @default.
- W3200775896 cites W2061553522 @default.
- W3200775896 cites W2073804591 @default.
- W3200775896 cites W2101404214 @default.
- W3200775896 cites W2164297615 @default.
- W3200775896 cites W2409760985 @default.
- W3200775896 cites W2605056791 @default.
- W3200775896 cites W2610571865 @default.
- W3200775896 cites W2732014993 @default.
- W3200775896 cites W2763495640 @default.
- W3200775896 cites W2783497650 @default.
- W3200775896 cites W2794195850 @default.
- W3200775896 cites W2889150436 @default.
- W3200775896 cites W2890106249 @default.
- W3200775896 cites W2893524191 @default.
- W3200775896 cites W2906413292 @default.
- W3200775896 cites W2909104701 @default.
- W3200775896 cites W2913958596 @default.
- W3200775896 cites W2921350794 @default.
- W3200775896 cites W2936290206 @default.
- W3200775896 cites W2938724855 @default.
- W3200775896 cites W2943421318 @default.
- W3200775896 cites W2963050785 @default.
- W3200775896 cites W2981673966 @default.
- W3200775896 cites W2990041205 @default.
- W3200775896 cites W2997121834 @default.
- W3200775896 cites W3003679051 @default.
- W3200775896 cites W3006690917 @default.
- W3200775896 cites W3011786811 @default.
- W3200775896 cites W3015568951 @default.
- W3200775896 cites W3017961348 @default.
- W3200775896 cites W3022479389 @default.
- W3200775896 cites W3024566200 @default.
- W3200775896 cites W3028247906 @default.
- W3200775896 cites W3031561042 @default.
- W3200775896 cites W3032620443 @default.
- W3200775896 cites W3033468301 @default.
- W3200775896 cites W3034200507 @default.
- W3200775896 cites W3037285524 @default.
- W3200775896 cites W3038344063 @default.
- W3200775896 cites W3043215010 @default.
- W3200775896 cites W3045108043 @default.
- W3200775896 cites W3045899972 @default.
- W3200775896 cites W3086691244 @default.
- W3200775896 cites W3089074983 @default.
- W3200775896 cites W3091623062 @default.
- W3200775896 cites W3092171880 @default.
- W3200775896 cites W3095474933 @default.
- W3200775896 cites W3105045451 @default.
- W3200775896 cites W3105684209 @default.
- W3200775896 cites W3107515836 @default.
- W3200775896 cites W3109338709 @default.
- W3200775896 cites W3120192529 @default.
- W3200775896 cites W3122653692 @default.
- W3200775896 cites W3127406027 @default.
- W3200775896 cites W3128408547 @default.
- W3200775896 cites W3150569976 @default.
- W3200775896 cites W3154068444 @default.
- W3200775896 cites W3154592068 @default.
- W3200775896 cites W3157304212 @default.
- W3200775896 cites W3159450490 @default.
- W3200775896 cites W3170559703 @default.
- W3200775896 cites W3174890472 @default.
- W3200775896 cites W4375905903 @default.
- W3200775896 doi "https://doi.org/10.1016/j.chaos.2021.111404" @default.
- W3200775896 hasPublicationYear "2021" @default.
- W3200775896 type Work @default.
- W3200775896 sameAs 3200775896 @default.
- W3200775896 citedByCount "37" @default.
- W3200775896 countsByYear W32007758962021 @default.
- W3200775896 countsByYear W32007758962022 @default.
- W3200775896 countsByYear W32007758962023 @default.
- W3200775896 crossrefType "journal-article" @default.
- W3200775896 hasAuthorship W3200775896A5012641009 @default.
- W3200775896 hasAuthorship W3200775896A5020317036 @default.
- W3200775896 hasAuthorship W3200775896A5049648837 @default.
- W3200775896 hasAuthorship W3200775896A5069175841 @default.
- W3200775896 hasConcept C104317684 @default.
- W3200775896 hasConcept C11413529 @default.
- W3200775896 hasConcept C126255220 @default.
- W3200775896 hasConcept C154249771 @default.
- W3200775896 hasConcept C154945302 @default.
- W3200775896 hasConcept C185592680 @default.
- W3200775896 hasConcept C198927703 @default.
- W3200775896 hasConcept C2778770139 @default.
- W3200775896 hasConcept C28826006 @default.