Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200780444> ?p ?o ?g. }
- W3200780444 endingPage "391" @default.
- W3200780444 startingPage "377" @default.
- W3200780444 abstract "With the booming of cyber attacks and cyber criminals against cyber-physical systems (CPSs), detecting these attacks remains challenging. It might be the worst of times, but it might be the best of times because of opportunities brought by machine learning (ML), in particular deep learning (DL). In general, DL delivers superior performance to ML because of its layered setting and its effective algorithm for extract useful information from training data. DL models are adopted quickly to cyber attacks against CPS systems. In this survey, a holistic view of recently proposed DL solutions is provided to cyber attack detection in the CPS context. A six-step DL driven methodology is provided to summarize and analyze the surveyed literature for applying DL methods to detect cyber attacks against CPS systems. The methodology includes CPS scenario analysis, cyber attack identification, ML problem formulation, DL model customization, data acquisition for training, and performance evaluation. The reviewed works indicate great potential to detect cyber attacks against CPS through DL modules. Moreover, excellent performance is achieved partly because of several high-quality datasets that are readily available for public use. Furthermore, challenges, opportunities, and research trends are pointed out for future research." @default.
- W3200780444 created "2021-09-27" @default.
- W3200780444 creator A5008770845 @default.
- W3200780444 creator A5034348483 @default.
- W3200780444 creator A5056248574 @default.
- W3200780444 creator A5071672663 @default.
- W3200780444 creator A5076576641 @default.
- W3200780444 creator A5083874423 @default.
- W3200780444 date "2022-03-01" @default.
- W3200780444 modified "2023-10-13" @default.
- W3200780444 title "Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey" @default.
- W3200780444 cites W1991510770 @default.
- W3200780444 cites W2039427951 @default.
- W3200780444 cites W2051000513 @default.
- W3200780444 cites W2062132646 @default.
- W3200780444 cites W2145339207 @default.
- W3200780444 cites W2156204309 @default.
- W3200780444 cites W2161251616 @default.
- W3200780444 cites W2161630727 @default.
- W3200780444 cites W2414564754 @default.
- W3200780444 cites W2570296101 @default.
- W3200780444 cites W2579603034 @default.
- W3200780444 cites W2605497964 @default.
- W3200780444 cites W2608911009 @default.
- W3200780444 cites W2617246254 @default.
- W3200780444 cites W2734490561 @default.
- W3200780444 cites W2753352458 @default.
- W3200780444 cites W2755148105 @default.
- W3200780444 cites W2762155482 @default.
- W3200780444 cites W2783221851 @default.
- W3200780444 cites W2787079451 @default.
- W3200780444 cites W2789828921 @default.
- W3200780444 cites W2790664081 @default.
- W3200780444 cites W2798302610 @default.
- W3200780444 cites W2798589477 @default.
- W3200780444 cites W2801378111 @default.
- W3200780444 cites W2806797541 @default.
- W3200780444 cites W2883055448 @default.
- W3200780444 cites W2889126059 @default.
- W3200780444 cites W2890991187 @default.
- W3200780444 cites W2896370767 @default.
- W3200780444 cites W2905097561 @default.
- W3200780444 cites W2907804426 @default.
- W3200780444 cites W2910579227 @default.
- W3200780444 cites W2910711617 @default.
- W3200780444 cites W2918850337 @default.
- W3200780444 cites W2920026315 @default.
- W3200780444 cites W2945889477 @default.
- W3200780444 cites W2948143530 @default.
- W3200780444 cites W2962621836 @default.
- W3200780444 cites W2963748489 @default.
- W3200780444 cites W2963832956 @default.
- W3200780444 cites W2966342255 @default.
- W3200780444 cites W2971723304 @default.
- W3200780444 cites W2979202956 @default.
- W3200780444 cites W2981023147 @default.
- W3200780444 cites W2991521149 @default.
- W3200780444 cites W2993463367 @default.
- W3200780444 cites W2995824836 @default.
- W3200780444 cites W2995984855 @default.
- W3200780444 cites W2998201667 @default.
- W3200780444 cites W3011056055 @default.
- W3200780444 cites W3013149459 @default.
- W3200780444 cites W3033777149 @default.
- W3200780444 cites W3042888165 @default.
- W3200780444 cites W3044607600 @default.
- W3200780444 cites W3086579950 @default.
- W3200780444 cites W3110407708 @default.
- W3200780444 cites W3112311055 @default.
- W3200780444 cites W3115892855 @default.
- W3200780444 cites W3119781401 @default.
- W3200780444 cites W3126426351 @default.
- W3200780444 cites W3136873430 @default.
- W3200780444 cites W3184914355 @default.
- W3200780444 cites W3217563563 @default.
- W3200780444 cites W4247200422 @default.
- W3200780444 doi "https://doi.org/10.1109/jas.2021.1004261" @default.
- W3200780444 hasPublicationYear "2022" @default.
- W3200780444 type Work @default.
- W3200780444 sameAs 3200780444 @default.
- W3200780444 citedByCount "110" @default.
- W3200780444 countsByYear W32007804442021 @default.
- W3200780444 countsByYear W32007804442022 @default.
- W3200780444 countsByYear W32007804442023 @default.
- W3200780444 crossrefType "journal-article" @default.
- W3200780444 hasAuthorship W3200780444A5008770845 @default.
- W3200780444 hasAuthorship W3200780444A5034348483 @default.
- W3200780444 hasAuthorship W3200780444A5056248574 @default.
- W3200780444 hasAuthorship W3200780444A5071672663 @default.
- W3200780444 hasAuthorship W3200780444A5076576641 @default.
- W3200780444 hasAuthorship W3200780444A5083874423 @default.
- W3200780444 hasConcept C108583219 @default.
- W3200780444 hasConcept C111919701 @default.
- W3200780444 hasConcept C116834253 @default.
- W3200780444 hasConcept C119857082 @default.
- W3200780444 hasConcept C136764020 @default.
- W3200780444 hasConcept C151730666 @default.
- W3200780444 hasConcept C154945302 @default.