Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200833013> ?p ?o ?g. }
- W3200833013 abstract "<p>The ability to predict multi-molecule processes, using only knowledge of single molecule structure, stands as a grand challenge for molecular modeling. Methods capable of predicting melting points (MP) solely from chemical structure represent a canonical example, and are highly desirable in many crucial industrial applications. In this work, we explore a data-driven approach utilizing machine learning (ML) techniques to predict and understand the MP of molecules. Several experimental databases are aggregated from the literature to design a low-bias dataset that includes 3D structural and quantum-chemical properties. Using experimental and polymorph-induced uncertainties, we derive a tenable lower limit for MP prediction accuracy, and apply graph neural networks and Gaussian processes to predict MP competitive with these error bounds. To further understand how MP correlates with molecular structure, we employ several semi-supervised and unsupervised ML techniques. First, we use unsupervised clustering methods to identify classes of molecules, their common fragments, and expected errors for each data set. We then build molecular geometric spaces shaped by MP with a semi-supervised variational autoencoder and graph embedding spaces, and apply graph attribution methods to highlight atom-level contributions to MP within the datasets. Overall, this work serves as a case study of how to employ a diversified ML toolkit to predict and understand correlations between molecular structures and thermophysical properties of interest.</p>" @default.
- W3200833013 created "2021-09-27" @default.
- W3200833013 creator A5004762529 @default.
- W3200833013 creator A5024672065 @default.
- W3200833013 creator A5046259488 @default.
- W3200833013 creator A5065990295 @default.
- W3200833013 creator A5068853530 @default.
- W3200833013 creator A5071495561 @default.
- W3200833013 creator A5075500139 @default.
- W3200833013 date "2019-09-30" @default.
- W3200833013 modified "2023-10-18" @default.
- W3200833013 title "A Diversified Machine Learning Strategy for Predicting and Understanding Molecular Melting Points" @default.
- W3200833013 cites W1519917312 @default.
- W3200833013 cites W1678356000 @default.
- W3200833013 cites W1968200975 @default.
- W3200833013 cites W1971375063 @default.
- W3200833013 cites W1971921169 @default.
- W3200833013 cites W1972234779 @default.
- W3200833013 cites W1976848779 @default.
- W3200833013 cites W1984994707 @default.
- W3200833013 cites W1988037271 @default.
- W3200833013 cites W2011215428 @default.
- W3200833013 cites W2030215025 @default.
- W3200833013 cites W2033757486 @default.
- W3200833013 cites W2034002625 @default.
- W3200833013 cites W2042932437 @default.
- W3200833013 cites W2079738328 @default.
- W3200833013 cites W2080635178 @default.
- W3200833013 cites W2080922998 @default.
- W3200833013 cites W2087321646 @default.
- W3200833013 cites W2104489082 @default.
- W3200833013 cites W2105776953 @default.
- W3200833013 cites W2134164499 @default.
- W3200833013 cites W2134565451 @default.
- W3200833013 cites W2164341716 @default.
- W3200833013 cites W2174230067 @default.
- W3200833013 cites W2176516200 @default.
- W3200833013 cites W2216412596 @default.
- W3200833013 cites W2241375048 @default.
- W3200833013 cites W2266664921 @default.
- W3200833013 cites W2330429488 @default.
- W3200833013 cites W2593252896 @default.
- W3200833013 cites W2594183968 @default.
- W3200833013 cites W2684599182 @default.
- W3200833013 cites W2735246657 @default.
- W3200833013 cites W2793179281 @default.
- W3200833013 cites W2911964244 @default.
- W3200833013 cites W2919214297 @default.
- W3200833013 cites W2946617578 @default.
- W3200833013 cites W2951048875 @default.
- W3200833013 cites W2952254971 @default.
- W3200833013 cites W2962858109 @default.
- W3200833013 cites W2963288913 @default.
- W3200833013 cites W2977595407 @default.
- W3200833013 cites W3116865743 @default.
- W3200833013 cites W32034058 @default.
- W3200833013 doi "https://doi.org/10.26434/chemrxiv.9914378.v1" @default.
- W3200833013 hasPublicationYear "2019" @default.
- W3200833013 type Work @default.
- W3200833013 sameAs 3200833013 @default.
- W3200833013 citedByCount "1" @default.
- W3200833013 countsByYear W32008330132021 @default.
- W3200833013 crossrefType "posted-content" @default.
- W3200833013 hasAuthorship W3200833013A5004762529 @default.
- W3200833013 hasAuthorship W3200833013A5024672065 @default.
- W3200833013 hasAuthorship W3200833013A5046259488 @default.
- W3200833013 hasAuthorship W3200833013A5065990295 @default.
- W3200833013 hasAuthorship W3200833013A5068853530 @default.
- W3200833013 hasAuthorship W3200833013A5071495561 @default.
- W3200833013 hasAuthorship W3200833013A5075500139 @default.
- W3200833013 hasBestOaLocation W32008330131 @default.
- W3200833013 hasConcept C101738243 @default.
- W3200833013 hasConcept C119857082 @default.
- W3200833013 hasConcept C124101348 @default.
- W3200833013 hasConcept C132525143 @default.
- W3200833013 hasConcept C147597530 @default.
- W3200833013 hasConcept C154945302 @default.
- W3200833013 hasConcept C163716315 @default.
- W3200833013 hasConcept C178790620 @default.
- W3200833013 hasConcept C185592680 @default.
- W3200833013 hasConcept C2780022179 @default.
- W3200833013 hasConcept C2991951333 @default.
- W3200833013 hasConcept C32909587 @default.
- W3200833013 hasConcept C41008148 @default.
- W3200833013 hasConcept C41608201 @default.
- W3200833013 hasConcept C50644808 @default.
- W3200833013 hasConcept C73555534 @default.
- W3200833013 hasConcept C8038995 @default.
- W3200833013 hasConcept C80444323 @default.
- W3200833013 hasConceptScore W3200833013C101738243 @default.
- W3200833013 hasConceptScore W3200833013C119857082 @default.
- W3200833013 hasConceptScore W3200833013C124101348 @default.
- W3200833013 hasConceptScore W3200833013C132525143 @default.
- W3200833013 hasConceptScore W3200833013C147597530 @default.
- W3200833013 hasConceptScore W3200833013C154945302 @default.
- W3200833013 hasConceptScore W3200833013C163716315 @default.
- W3200833013 hasConceptScore W3200833013C178790620 @default.
- W3200833013 hasConceptScore W3200833013C185592680 @default.
- W3200833013 hasConceptScore W3200833013C2780022179 @default.
- W3200833013 hasConceptScore W3200833013C2991951333 @default.