Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200909181> ?p ?o ?g. }
- W3200909181 endingPage "675" @default.
- W3200909181 startingPage "657" @default.
- W3200909181 abstract "Estimating terrestrial water storage (TWS) with high spatial resolution is crucial for hydrological and water resource management. Comparing to traditional in-situ data measurement, observation from space borne sensor such as Gravity Recovery and Climate Experiment (GRACE) satellites is quite effective to obtain a large-scale TWS data. However, the coarse resolution of the GRACE data restricts its application at a local scale. This paper presents three novel convolutional neural network (CNN) based approaches including the Super-Resolution CNN (SRCNN), the Very Deep Super-Resolution (VDSR), and the Residual Channel Attention Networks (RCAN) to spatial downscaling of the monthly GRACE TWS products using the outputs of the Ecological Assimilation of Land and Climate Observations (EALCO) model over Canada. We also compare the performance of CNN-based methods with the empirical linear regression-based downscaling method. All comparison results were evaluated by root mean square error (RMSE) between the reconstructed GRACE TWS and the original one. RMSEs over the matched pixels are 22.3, 14.4, 18.4 and 71.6 mm of SRCNN, VDSR, RCAN and linear regression-based method respectively. Obviously, VDSR shows the best accuracy among all methods. The result shows all CNN-based super resolution methods preform much better than traditional method in spatial downscaling." @default.
- W3200909181 created "2021-09-27" @default.
- W3200909181 creator A5000159923 @default.
- W3200909181 creator A5006763919 @default.
- W3200909181 creator A5007144110 @default.
- W3200909181 creator A5017880637 @default.
- W3200909181 creator A5037028903 @default.
- W3200909181 creator A5040316256 @default.
- W3200909181 creator A5049403375 @default.
- W3200909181 creator A5051037624 @default.
- W3200909181 creator A5059329180 @default.
- W3200909181 creator A5071340024 @default.
- W3200909181 date "2021-07-04" @default.
- W3200909181 modified "2023-10-12" @default.
- W3200909181 title "Deep Learning Approaches to Spatial Downscaling of GRACE Terrestrial Water Storage Products Using EALCO Model Over Canada" @default.
- W3200909181 cites W1480234772 @default.
- W3200909181 cites W1591945903 @default.
- W3200909181 cites W1788635248 @default.
- W3200909181 cites W1885185971 @default.
- W3200909181 cites W1919227438 @default.
- W3200909181 cites W1929158363 @default.
- W3200909181 cites W1979850423 @default.
- W3200909181 cites W1988207726 @default.
- W3200909181 cites W2000779301 @default.
- W3200909181 cites W2003453695 @default.
- W3200909181 cites W2025538039 @default.
- W3200909181 cites W2029583046 @default.
- W3200909181 cites W2052616784 @default.
- W3200909181 cites W2054975887 @default.
- W3200909181 cites W2055772433 @default.
- W3200909181 cites W2056537892 @default.
- W3200909181 cites W2063683139 @default.
- W3200909181 cites W2066175464 @default.
- W3200909181 cites W2075965791 @default.
- W3200909181 cites W2076063813 @default.
- W3200909181 cites W2091232816 @default.
- W3200909181 cites W2096477240 @default.
- W3200909181 cites W2101823097 @default.
- W3200909181 cites W2106077644 @default.
- W3200909181 cites W2107373917 @default.
- W3200909181 cites W2109166354 @default.
- W3200909181 cites W2124127430 @default.
- W3200909181 cites W2128095597 @default.
- W3200909181 cites W2128435038 @default.
- W3200909181 cites W2128956163 @default.
- W3200909181 cites W2129928122 @default.
- W3200909181 cites W2132012867 @default.
- W3200909181 cites W2143941656 @default.
- W3200909181 cites W2147579960 @default.
- W3200909181 cites W2176673053 @default.
- W3200909181 cites W2202532860 @default.
- W3200909181 cites W2214802144 @default.
- W3200909181 cites W2242218935 @default.
- W3200909181 cites W2315801944 @default.
- W3200909181 cites W2324101356 @default.
- W3200909181 cites W2325678563 @default.
- W3200909181 cites W2329779949 @default.
- W3200909181 cites W2331377021 @default.
- W3200909181 cites W2346074228 @default.
- W3200909181 cites W2463437968 @default.
- W3200909181 cites W2476548250 @default.
- W3200909181 cites W2503339013 @default.
- W3200909181 cites W2529998007 @default.
- W3200909181 cites W2591713612 @default.
- W3200909181 cites W2593697158 @default.
- W3200909181 cites W2599626823 @default.
- W3200909181 cites W2601189861 @default.
- W3200909181 cites W2604521289 @default.
- W3200909181 cites W2607041014 @default.
- W3200909181 cites W2743752376 @default.
- W3200909181 cites W2747898905 @default.
- W3200909181 cites W2765345426 @default.
- W3200909181 cites W2766084951 @default.
- W3200909181 cites W2780544323 @default.
- W3200909181 cites W2786804361 @default.
- W3200909181 cites W2803410606 @default.
- W3200909181 cites W2866634454 @default.
- W3200909181 cites W2883907356 @default.
- W3200909181 cites W2887695188 @default.
- W3200909181 cites W2914072979 @default.
- W3200909181 cites W2948053842 @default.
- W3200909181 cites W2954930822 @default.
- W3200909181 cites W2963372104 @default.
- W3200909181 cites W2963470893 @default.
- W3200909181 cites W2963578515 @default.
- W3200909181 cites W2968363666 @default.
- W3200909181 cites W2981043169 @default.
- W3200909181 cites W2990916810 @default.
- W3200909181 cites W2992919187 @default.
- W3200909181 cites W2994688647 @default.
- W3200909181 cites W3034247386 @default.
- W3200909181 cites W3108040709 @default.
- W3200909181 cites W865962863 @default.
- W3200909181 doi "https://doi.org/10.1080/07038992.2021.1954498" @default.
- W3200909181 hasPublicationYear "2021" @default.
- W3200909181 type Work @default.
- W3200909181 sameAs 3200909181 @default.
- W3200909181 citedByCount "5" @default.