Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200923615> ?p ?o ?g. }
- W3200923615 abstract "Geosynthetics are susceptible to creep, which leads to time-dependent strains and potentially induces deformation of the structural systems. In the design of geosynthetics, one of the major issues is to apply the appropriate creep reduction factors. To evaluate the creep behavior of geosynthetics, four creep test methods were utilized in this study: Stepped Isothermal Method (SIM), Time-Temperature Superposition (TTS), Time-Temperature-Stress Superposition (TTSS), and a conventional method. SIM and TTS are accelerated creep methods by using elevated temperatures instead of a long testing duration. SIM particularly uses a single specimen throughout a sequence of elevated temperature tests and thus, material variability can be avoided in contrast to TTS. The procedure to generate a creep master curve in SIM was modified from that recommended by ASTM to account for thermal expansion of geosynthetics. TTSS imposes the stress effect to TTS and is suitable for polymers that have limitations in adopting TTS.In this study, three types of geosynthetics were tested: drainage components, i.e., high density polyethylene (HDPE) geonet and geocomposite, the expanded polystyrene (EPS) geofoam, and the polyethylene-terephthalate (PET) and HDPE geogrids. For the geonet and geocomposite, the tests were performed under compressive loads at different inclined angles to simulate the application in the side slope of the landfills. The results showed that the creep strains of the drainage components increased with inclined angles for both geonet and geocomposite. For the geonet, the secondary creep stage was found to coincide with the roll-over of upper ribs, indicating that the geometry of geonet had a strong influence to its creep behavior. Furthermore, the onset time of the secondary stage decreased as inclined angles increased. The creep behavior of the geocomposite was substantially different from that of the corresponding geonet, showing only primary creep stage. The absence of the secondary creep was due to the localized interface friction between the needle-punched nonwoven geotextile and the ribs. The friction prevented the abrupt roll-over phenomenon in the geonet.The compressive creep behavior of the EPS geofoam was investigated. A bilinear relationship between compressive strength and temperature with transition at 43oC had direct impact on the results of SIM and TTS. A premature secondary creep stage in comparison with a conventional method data and the change of activation energy were observed at test temperatures above 43oC. The alternative accelerated creep test, TTSS, was conducted at temperatures below 43oC and was found to be the most appropriate method for this geofoam.The tensile creep behavior of the PET and HDPE geogrids were evaluated, and the creep strains of the PET geogrid were much less than the HDPE geogrid at the same percentage of ultimate tensile strength. Also, the HDPE geogrid went through the primary, secondary and tertiary creep prior to the rupture, whereas only primary creep and rupture were detected…" @default.
- W3200923615 created "2021-09-27" @default.
- W3200923615 creator A5021054516 @default.
- W3200923615 date "2021-07-16" @default.
- W3200923615 modified "2023-09-27" @default.
- W3200923615 title "Evaluation of creep behavior of geosynthetics using accelerated and conventional methods" @default.
- W3200923615 cites W1482439189 @default.
- W3200923615 cites W1581549611 @default.
- W3200923615 cites W1591336382 @default.
- W3200923615 cites W166440186 @default.
- W3200923615 cites W1965647046 @default.
- W3200923615 cites W1974342503 @default.
- W3200923615 cites W1976657169 @default.
- W3200923615 cites W1978056877 @default.
- W3200923615 cites W1981151361 @default.
- W3200923615 cites W1984559221 @default.
- W3200923615 cites W1988147327 @default.
- W3200923615 cites W1993935834 @default.
- W3200923615 cites W1997002707 @default.
- W3200923615 cites W1998278563 @default.
- W3200923615 cites W2008862264 @default.
- W3200923615 cites W2009265795 @default.
- W3200923615 cites W2018249864 @default.
- W3200923615 cites W2018459806 @default.
- W3200923615 cites W2024745881 @default.
- W3200923615 cites W2035099148 @default.
- W3200923615 cites W2042377775 @default.
- W3200923615 cites W2043063319 @default.
- W3200923615 cites W2047421003 @default.
- W3200923615 cites W2048295164 @default.
- W3200923615 cites W2049859379 @default.
- W3200923615 cites W2056362656 @default.
- W3200923615 cites W2058364967 @default.
- W3200923615 cites W2058802389 @default.
- W3200923615 cites W2077957842 @default.
- W3200923615 cites W2080818508 @default.
- W3200923615 cites W2085296988 @default.
- W3200923615 cites W2087174872 @default.
- W3200923615 cites W2087811432 @default.
- W3200923615 cites W2089765935 @default.
- W3200923615 cites W2090791368 @default.
- W3200923615 cites W2098515878 @default.
- W3200923615 cites W2106067325 @default.
- W3200923615 cites W2111591307 @default.
- W3200923615 cites W2115748228 @default.
- W3200923615 cites W2142957373 @default.
- W3200923615 cites W2145606257 @default.
- W3200923615 cites W2148314348 @default.
- W3200923615 cites W2160285369 @default.
- W3200923615 cites W2331749886 @default.
- W3200923615 cites W2727420541 @default.
- W3200923615 cites W2798606626 @default.
- W3200923615 cites W425043266 @default.
- W3200923615 cites W629524356 @default.
- W3200923615 doi "https://doi.org/10.17918/etd-1780" @default.
- W3200923615 hasPublicationYear "2021" @default.
- W3200923615 type Work @default.
- W3200923615 sameAs 3200923615 @default.
- W3200923615 citedByCount "2" @default.
- W3200923615 countsByYear W32009236152012 @default.
- W3200923615 countsByYear W32009236152016 @default.
- W3200923615 crossrefType "dissertation" @default.
- W3200923615 hasAuthorship W3200923615A5021054516 @default.
- W3200923615 hasConcept C127413603 @default.
- W3200923615 hasConcept C134306372 @default.
- W3200923615 hasConcept C138885662 @default.
- W3200923615 hasConcept C149912024 @default.
- W3200923615 hasConcept C159985019 @default.
- W3200923615 hasConcept C181748761 @default.
- W3200923615 hasConcept C187320778 @default.
- W3200923615 hasConcept C18903297 @default.
- W3200923615 hasConcept C192562407 @default.
- W3200923615 hasConcept C21036866 @default.
- W3200923615 hasConcept C27753989 @default.
- W3200923615 hasConcept C2778491893 @default.
- W3200923615 hasConcept C2779751980 @default.
- W3200923615 hasConcept C33923547 @default.
- W3200923615 hasConcept C41895202 @default.
- W3200923615 hasConcept C66938386 @default.
- W3200923615 hasConcept C67592535 @default.
- W3200923615 hasConcept C86803240 @default.
- W3200923615 hasConceptScore W3200923615C127413603 @default.
- W3200923615 hasConceptScore W3200923615C134306372 @default.
- W3200923615 hasConceptScore W3200923615C138885662 @default.
- W3200923615 hasConceptScore W3200923615C149912024 @default.
- W3200923615 hasConceptScore W3200923615C159985019 @default.
- W3200923615 hasConceptScore W3200923615C181748761 @default.
- W3200923615 hasConceptScore W3200923615C187320778 @default.
- W3200923615 hasConceptScore W3200923615C18903297 @default.
- W3200923615 hasConceptScore W3200923615C192562407 @default.
- W3200923615 hasConceptScore W3200923615C21036866 @default.
- W3200923615 hasConceptScore W3200923615C27753989 @default.
- W3200923615 hasConceptScore W3200923615C2778491893 @default.
- W3200923615 hasConceptScore W3200923615C2779751980 @default.
- W3200923615 hasConceptScore W3200923615C33923547 @default.
- W3200923615 hasConceptScore W3200923615C41895202 @default.
- W3200923615 hasConceptScore W3200923615C66938386 @default.
- W3200923615 hasConceptScore W3200923615C67592535 @default.
- W3200923615 hasConceptScore W3200923615C86803240 @default.
- W3200923615 hasLocation W32009236151 @default.