Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200933545> ?p ?o ?g. }
- W3200933545 endingPage "12723" @default.
- W3200933545 startingPage "12713" @default.
- W3200933545 abstract "Cow genotypes are expected to improve the accuracy of genomic estimated breeding values (GEBV) for young bulls in relatively small populations such as Thai Holstein-Friesian crossbred dairy cattle in Thailand. The objective of this study was to investigate the effect of cow genotypes on the predictive ability and individual accuracies of GEBV for young dairy bulls in Thailand. Test-day data included milk yield (n = 170,666), milk component traits (fat yield, protein yield, total solids yield, fat percentage, protein percentage, and total solids percentage; n = 160,526), and somatic cell score (n = 82,378) from 23,201, 82,378, and 13,737 (for milk yield, milk component traits, and SCS, respectively) cows calving between 1993 and 2017, respectively. Pedigree information included 51,128; 48,834; and 32,743 animals for milk yield, milk component traits, and somatic cell score, respectively. Additionally, 876, 868, and 632 pedigreed animals (for milk yield, milk component traits, and SCS, respectively) were genotyped (152 bulls and 724 cows), respectively, using Illumina Bovine SNP50 BeadChip. We cut off the data in the last 6 yr, and the validation animals were defined as genotyped bulls with no daughters in the truncated set. We calculated GEBV using a single-step random regression test-day model (SS-RR-TDM), in comparison with estimated breed value (EBV) based on the pedigree-based model used as the official method in Thailand (RR-TDM). Individual accuracies of GEBV were obtained by inverting the coefficient matrix of the mixed model equations, whereas validation accuracies were measured by the Pearson correlation between deregressed EBV from the full data set and (G)EBV predicted with the reduced data set. When only bull genotypes were used, on average, SS-RR-TDM increased individual accuracies by 0.22 and validation accuracies by 0.07, compared with RR-TDM. With cow genotypes, the additional increase was 0.02 for individual accuracies and 0.06 for validation accuracies. The inflation of GEBV tended to be reduced using cow genotypes. Genomic evaluation by SS-RR-TDM is feasible to select young bulls for the longitudinal traits in Thai dairy cattle, and the accuracy of selection is expected to be increased with more genotypes. Genomic selection using the SS-RR-TDM should be implemented in the routine genetic evaluation of the Thai dairy cattle population. The genetic evaluation should consider including genotypes of both sires and cows." @default.
- W3200933545 created "2021-09-27" @default.
- W3200933545 creator A5007512078 @default.
- W3200933545 creator A5009593850 @default.
- W3200933545 creator A5011663483 @default.
- W3200933545 creator A5013776748 @default.
- W3200933545 creator A5086264040 @default.
- W3200933545 date "2021-12-01" @default.
- W3200933545 modified "2023-09-26" @default.
- W3200933545 title "Genomic prediction of milk-production traits and somatic cell score using single-step genomic best linear unbiased predictor with random regression test-day model in Thai dairy cattle" @default.
- W3200933545 cites W1677902531 @default.
- W3200933545 cites W1965963551 @default.
- W3200933545 cites W1969336553 @default.
- W3200933545 cites W1975977333 @default.
- W3200933545 cites W1977969838 @default.
- W3200933545 cites W1991147437 @default.
- W3200933545 cites W1992670639 @default.
- W3200933545 cites W2007994203 @default.
- W3200933545 cites W2041000916 @default.
- W3200933545 cites W2046914833 @default.
- W3200933545 cites W2066680876 @default.
- W3200933545 cites W2067715889 @default.
- W3200933545 cites W2068655069 @default.
- W3200933545 cites W2071430437 @default.
- W3200933545 cites W2071463859 @default.
- W3200933545 cites W2074043148 @default.
- W3200933545 cites W2085864372 @default.
- W3200933545 cites W2095559014 @default.
- W3200933545 cites W2098787020 @default.
- W3200933545 cites W2100336348 @default.
- W3200933545 cites W2105632937 @default.
- W3200933545 cites W2106169885 @default.
- W3200933545 cites W2106954465 @default.
- W3200933545 cites W2110787179 @default.
- W3200933545 cites W2114044285 @default.
- W3200933545 cites W2117567387 @default.
- W3200933545 cites W2122837417 @default.
- W3200933545 cites W2142220815 @default.
- W3200933545 cites W2142727510 @default.
- W3200933545 cites W2144811453 @default.
- W3200933545 cites W2158278529 @default.
- W3200933545 cites W2164050502 @default.
- W3200933545 cites W2197176734 @default.
- W3200933545 cites W2262801583 @default.
- W3200933545 cites W2326106328 @default.
- W3200933545 cites W2342583325 @default.
- W3200933545 cites W2474436508 @default.
- W3200933545 cites W2492479204 @default.
- W3200933545 cites W2508879308 @default.
- W3200933545 cites W2512394683 @default.
- W3200933545 cites W2556049977 @default.
- W3200933545 cites W2565931376 @default.
- W3200933545 cites W2614456766 @default.
- W3200933545 cites W2894468846 @default.
- W3200933545 cites W2898634952 @default.
- W3200933545 cites W2899673678 @default.
- W3200933545 cites W2905256367 @default.
- W3200933545 cites W2908633724 @default.
- W3200933545 cites W2913155355 @default.
- W3200933545 cites W2975334847 @default.
- W3200933545 cites W2984470908 @default.
- W3200933545 cites W3014116454 @default.
- W3200933545 cites W3019408181 @default.
- W3200933545 cites W3019652212 @default.
- W3200933545 doi "https://doi.org/10.3168/jds.2021-20263" @default.
- W3200933545 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34538484" @default.
- W3200933545 hasPublicationYear "2021" @default.
- W3200933545 type Work @default.
- W3200933545 sameAs 3200933545 @default.
- W3200933545 citedByCount "5" @default.
- W3200933545 countsByYear W32009335452022 @default.
- W3200933545 countsByYear W32009335452023 @default.
- W3200933545 crossrefType "journal-article" @default.
- W3200933545 hasAuthorship W3200933545A5007512078 @default.
- W3200933545 hasAuthorship W3200933545A5009593850 @default.
- W3200933545 hasAuthorship W3200933545A5011663483 @default.
- W3200933545 hasAuthorship W3200933545A5013776748 @default.
- W3200933545 hasAuthorship W3200933545A5086264040 @default.
- W3200933545 hasBestOaLocation W32009335451 @default.
- W3200933545 hasConcept C103545067 @default.
- W3200933545 hasConcept C105795698 @default.
- W3200933545 hasConcept C140793950 @default.
- W3200933545 hasConcept C150903083 @default.
- W3200933545 hasConcept C154945302 @default.
- W3200933545 hasConcept C173419221 @default.
- W3200933545 hasConcept C22641795 @default.
- W3200933545 hasConcept C2776482104 @default.
- W3200933545 hasConcept C2776659692 @default.
- W3200933545 hasConcept C2776792119 @default.
- W3200933545 hasConcept C2776977481 @default.
- W3200933545 hasConcept C2778717857 @default.
- W3200933545 hasConcept C2778733383 @default.
- W3200933545 hasConcept C2779234561 @default.
- W3200933545 hasConcept C2909725152 @default.
- W3200933545 hasConcept C3020171069 @default.
- W3200933545 hasConcept C31903555 @default.
- W3200933545 hasConcept C33923547 @default.
- W3200933545 hasConcept C41008148 @default.