Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200958980> ?p ?o ?g. }
- W3200958980 endingPage "2201" @default.
- W3200958980 startingPage "2188" @default.
- W3200958980 abstract "In order to predict the influence of fly ash (FA) and Alccofine (AL) on the compressive strength (CS), flexural strength (FS), split tensile strength (STS), and rapid chloride permeability test (RCPT) of concrete in a different age of samples, an experimental-based dataset was selected. This research was carried out by investigating the forecasting accuracy of different data mining (DM) models. To gain this, a score-based system is proposed to compare the applied method's productivity based on R, RMSE, and MAE results. As shown in the results, CS, FS, STS, and RCPT's predicted values are very close to the experimental values in both training and testing samples. By considering the highest R among the developed models, the MLP model was the most efficient algorithm, at 0.9983, 0.9981, and 0.985 to predict CS, FS, and STS, respectively. Regarding RCPT results, Additive regression algorithm has the highest accuracy with TRS at 53. According to the ranking score, for prediction all four mechanical properties of concrete modified with FA and AL, among the applied models, SMOreg has the lowest rank, and GPR could be recognized as the second-best method." @default.
- W3200958980 created "2021-09-27" @default.
- W3200958980 creator A5007804596 @default.
- W3200958980 creator A5065485385 @default.
- W3200958980 date "2021-11-01" @default.
- W3200958980 modified "2023-10-01" @default.
- W3200958980 title "Comparison of data mining methods to predict mechanical properties of concrete with fly ash and alccofine" @default.
- W3200958980 cites W1678356000 @default.
- W3200958980 cites W1964654395 @default.
- W3200958980 cites W1971951561 @default.
- W3200958980 cites W1990454634 @default.
- W3200958980 cites W1997794251 @default.
- W3200958980 cites W1999838111 @default.
- W3200958980 cites W2003072142 @default.
- W3200958980 cites W2005374071 @default.
- W3200958980 cites W2028885895 @default.
- W3200958980 cites W2048245247 @default.
- W3200958980 cites W2052757243 @default.
- W3200958980 cites W2061933243 @default.
- W3200958980 cites W2064769840 @default.
- W3200958980 cites W2076178974 @default.
- W3200958980 cites W2078259041 @default.
- W3200958980 cites W2083916367 @default.
- W3200958980 cites W2088053778 @default.
- W3200958980 cites W2089251550 @default.
- W3200958980 cites W2101893253 @default.
- W3200958980 cites W2122284941 @default.
- W3200958980 cites W2125223451 @default.
- W3200958980 cites W2161871251 @default.
- W3200958980 cites W2169139688 @default.
- W3200958980 cites W2520327139 @default.
- W3200958980 cites W2594967417 @default.
- W3200958980 cites W2615532093 @default.
- W3200958980 cites W2799952091 @default.
- W3200958980 cites W2894889166 @default.
- W3200958980 cites W2911964244 @default.
- W3200958980 cites W2950792574 @default.
- W3200958980 cites W2951145704 @default.
- W3200958980 cites W2975276623 @default.
- W3200958980 cites W2976377879 @default.
- W3200958980 cites W2977280727 @default.
- W3200958980 cites W2985863519 @default.
- W3200958980 cites W2991472935 @default.
- W3200958980 cites W2998771255 @default.
- W3200958980 cites W3013641661 @default.
- W3200958980 cites W3035023373 @default.
- W3200958980 cites W3093637581 @default.
- W3200958980 cites W3098542574 @default.
- W3200958980 cites W4212883601 @default.
- W3200958980 cites W4239510810 @default.
- W3200958980 cites W4244313837 @default.
- W3200958980 doi "https://doi.org/10.1016/j.jmrt.2021.09.024" @default.
- W3200958980 hasPublicationYear "2021" @default.
- W3200958980 type Work @default.
- W3200958980 sameAs 3200958980 @default.
- W3200958980 citedByCount "3" @default.
- W3200958980 countsByYear W32009589802021 @default.
- W3200958980 countsByYear W32009589802022 @default.
- W3200958980 countsByYear W32009589802023 @default.
- W3200958980 crossrefType "journal-article" @default.
- W3200958980 hasAuthorship W3200958980A5007804596 @default.
- W3200958980 hasAuthorship W3200958980A5065485385 @default.
- W3200958980 hasBestOaLocation W32009589801 @default.
- W3200958980 hasConcept C105795698 @default.
- W3200958980 hasConcept C112950240 @default.
- W3200958980 hasConcept C119857082 @default.
- W3200958980 hasConcept C159985019 @default.
- W3200958980 hasConcept C178405089 @default.
- W3200958980 hasConcept C189430467 @default.
- W3200958980 hasConcept C192562407 @default.
- W3200958980 hasConcept C30407753 @default.
- W3200958980 hasConcept C33923547 @default.
- W3200958980 hasConcept C41008148 @default.
- W3200958980 hasConcept C87343466 @default.
- W3200958980 hasConceptScore W3200958980C105795698 @default.
- W3200958980 hasConceptScore W3200958980C112950240 @default.
- W3200958980 hasConceptScore W3200958980C119857082 @default.
- W3200958980 hasConceptScore W3200958980C159985019 @default.
- W3200958980 hasConceptScore W3200958980C178405089 @default.
- W3200958980 hasConceptScore W3200958980C189430467 @default.
- W3200958980 hasConceptScore W3200958980C192562407 @default.
- W3200958980 hasConceptScore W3200958980C30407753 @default.
- W3200958980 hasConceptScore W3200958980C33923547 @default.
- W3200958980 hasConceptScore W3200958980C41008148 @default.
- W3200958980 hasConceptScore W3200958980C87343466 @default.
- W3200958980 hasLocation W32009589801 @default.
- W3200958980 hasLocation W32009589802 @default.
- W3200958980 hasOpenAccess W3200958980 @default.
- W3200958980 hasPrimaryLocation W32009589801 @default.
- W3200958980 hasRelatedWork W1987501563 @default.
- W3200958980 hasRelatedWork W1991149850 @default.
- W3200958980 hasRelatedWork W2069000541 @default.
- W3200958980 hasRelatedWork W2263203467 @default.
- W3200958980 hasRelatedWork W2349671452 @default.
- W3200958980 hasRelatedWork W2982258636 @default.
- W3200958980 hasRelatedWork W3014189477 @default.
- W3200958980 hasRelatedWork W3023728274 @default.
- W3200958980 hasRelatedWork W3091188299 @default.