Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200966602> ?p ?o ?g. }
- W3200966602 endingPage "103935" @default.
- W3200966602 startingPage "103935" @default.
- W3200966602 abstract "• The automatic monitoring of road conditions for multiple countries is addressed. • Deep Learning models are trained for detecting road damages in India, Japan, and Czech. • Recommendations are provided for reusing the data and models released by any country. • A large-scale road damage dataset comprising 26,620 annotated road images is proposed. • The Global Road Damage Detection Challenge’2020 utilizes a part of the proposed data. Many municipalities and road authorities seek to implement automated evaluation of road damage. However, they often lack technology, know-how, and funds to afford state-of-the-art equipment for data collection and analysis of road damages. Although some countries, like Japan, have developed less expensive and readily available Smartphone-based methods for automatic road condition monitoring, other countries still struggle to find efficient solutions. This work makes the following contributions in this context. Firstly, it assesses usability of Japanese model for other countries. Secondly, it proposes a large-scale heterogeneous road damage dataset comprising 26,620 images collected from multiple countries (India, Japan, and the Czech Republic) using smartphones. Thirdly, it proposes models capable of detecting and classifying road damages in more than one country. Lastly, the study provides recommendations for readers, local agencies, and municipalities of other countries when one other country publishes its data and model for automatic road damage detection and classification. A part of the proposed dataset was utilized for Global Road Damage Detection Challenge’2020 and can be accessed at ( https://github.com/sekilab/RoadDamageDetector/ )." @default.
- W3200966602 created "2021-09-27" @default.
- W3200966602 creator A5014870857 @default.
- W3200966602 creator A5019754446 @default.
- W3200966602 creator A5024842056 @default.
- W3200966602 creator A5041848182 @default.
- W3200966602 creator A5082753354 @default.
- W3200966602 creator A5086006069 @default.
- W3200966602 creator A5091415827 @default.
- W3200966602 date "2021-12-01" @default.
- W3200966602 modified "2023-10-17" @default.
- W3200966602 title "Deep learning-based road damage detection and classification for multiple countries" @default.
- W3200966602 cites W1862829300 @default.
- W3200966602 cites W2031489346 @default.
- W3200966602 cites W2144801789 @default.
- W3200966602 cites W2163352987 @default.
- W3200966602 cites W2336427774 @default.
- W3200966602 cites W2407692387 @default.
- W3200966602 cites W2526166515 @default.
- W3200966602 cites W2594902870 @default.
- W3200966602 cites W2622632229 @default.
- W3200966602 cites W2748643398 @default.
- W3200966602 cites W2748746495 @default.
- W3200966602 cites W2884786778 @default.
- W3200966602 cites W2887295382 @default.
- W3200966602 cites W2896496331 @default.
- W3200966602 cites W2898560232 @default.
- W3200966602 cites W2899803215 @default.
- W3200966602 cites W2945689285 @default.
- W3200966602 cites W2964308596 @default.
- W3200966602 cites W2997453354 @default.
- W3200966602 cites W3007515473 @default.
- W3200966602 cites W3021470593 @default.
- W3200966602 cites W3106893417 @default.
- W3200966602 cites W3111563719 @default.
- W3200966602 cites W3124942917 @default.
- W3200966602 cites W3134279451 @default.
- W3200966602 cites W3161660388 @default.
- W3200966602 cites W3175064897 @default.
- W3200966602 doi "https://doi.org/10.1016/j.autcon.2021.103935" @default.
- W3200966602 hasPublicationYear "2021" @default.
- W3200966602 type Work @default.
- W3200966602 sameAs 3200966602 @default.
- W3200966602 citedByCount "70" @default.
- W3200966602 countsByYear W32009666022021 @default.
- W3200966602 countsByYear W32009666022022 @default.
- W3200966602 countsByYear W32009666022023 @default.
- W3200966602 crossrefType "journal-article" @default.
- W3200966602 hasAuthorship W3200966602A5014870857 @default.
- W3200966602 hasAuthorship W3200966602A5019754446 @default.
- W3200966602 hasAuthorship W3200966602A5024842056 @default.
- W3200966602 hasAuthorship W3200966602A5041848182 @default.
- W3200966602 hasAuthorship W3200966602A5082753354 @default.
- W3200966602 hasAuthorship W3200966602A5086006069 @default.
- W3200966602 hasAuthorship W3200966602A5091415827 @default.
- W3200966602 hasBestOaLocation W32009666021 @default.
- W3200966602 hasConcept C105795698 @default.
- W3200966602 hasConcept C107457646 @default.
- W3200966602 hasConcept C127413603 @default.
- W3200966602 hasConcept C133462117 @default.
- W3200966602 hasConcept C138885662 @default.
- W3200966602 hasConcept C166957645 @default.
- W3200966602 hasConcept C170130773 @default.
- W3200966602 hasConcept C17744445 @default.
- W3200966602 hasConcept C199539241 @default.
- W3200966602 hasConcept C205649164 @default.
- W3200966602 hasConcept C22212356 @default.
- W3200966602 hasConcept C2777381055 @default.
- W3200966602 hasConcept C2777842544 @default.
- W3200966602 hasConcept C2778755073 @default.
- W3200966602 hasConcept C2779343474 @default.
- W3200966602 hasConcept C33923547 @default.
- W3200966602 hasConcept C41008148 @default.
- W3200966602 hasConcept C41895202 @default.
- W3200966602 hasConcept C58640448 @default.
- W3200966602 hasConceptScore W3200966602C105795698 @default.
- W3200966602 hasConceptScore W3200966602C107457646 @default.
- W3200966602 hasConceptScore W3200966602C127413603 @default.
- W3200966602 hasConceptScore W3200966602C133462117 @default.
- W3200966602 hasConceptScore W3200966602C138885662 @default.
- W3200966602 hasConceptScore W3200966602C166957645 @default.
- W3200966602 hasConceptScore W3200966602C170130773 @default.
- W3200966602 hasConceptScore W3200966602C17744445 @default.
- W3200966602 hasConceptScore W3200966602C199539241 @default.
- W3200966602 hasConceptScore W3200966602C205649164 @default.
- W3200966602 hasConceptScore W3200966602C22212356 @default.
- W3200966602 hasConceptScore W3200966602C2777381055 @default.
- W3200966602 hasConceptScore W3200966602C2777842544 @default.
- W3200966602 hasConceptScore W3200966602C2778755073 @default.
- W3200966602 hasConceptScore W3200966602C2779343474 @default.
- W3200966602 hasConceptScore W3200966602C33923547 @default.
- W3200966602 hasConceptScore W3200966602C41008148 @default.
- W3200966602 hasConceptScore W3200966602C41895202 @default.
- W3200966602 hasConceptScore W3200966602C58640448 @default.
- W3200966602 hasLocation W32009666021 @default.
- W3200966602 hasOpenAccess W3200966602 @default.
- W3200966602 hasPrimaryLocation W32009666021 @default.
- W3200966602 hasRelatedWork W11890918 @default.