Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201006174> ?p ?o ?g. }
- W3201006174 endingPage "5522" @default.
- W3201006174 startingPage "5512" @default.
- W3201006174 abstract "By exploiting the sparsity of signal sources in the spatial domain, compressive sensing (CS) based directional of arrival (DOA) estimation has emerged as a promising approach especially in the case of a limited number of snapshots. However, due to the use of a large overcomplete dictionary obtained from a predefined grid, CS-based DOA estimation methods normally suffer from high computational complexity and the grid mismatch problem. Many methods, in particular sparse Bayesian learning (SBL) based off-grid methods, have been developed to address the grid mismatch problem at the cost of high complexity. In this work, we develop a new method for DOA estimation based on marginal likelihood maximization, where the array manifold matrix is learned incrementally, which is in contrast to the use of overcomplete dictionaries or grid matrices in existing CS or SBL based methods. We show that the problem of marginal likelihood maximization over multiple variables can be greatly simplified to maximization of a simple cost function over a sole variable (angle), which enables the learning of the manifold matrix and the development of an efficient solver. The grid mismatch problem is circumvented and the manifold matrix during learning is kept in a small size (slightly larger than the number of sources), leading to low computational complexity. Simulations results demonstrate the merits of the proposed method in terms of performance and computational complexity, compared to state-of-the-art SBL-based methods." @default.
- W3201006174 created "2021-09-27" @default.
- W3201006174 creator A5022275919 @default.
- W3201006174 creator A5035376596 @default.
- W3201006174 creator A5047844850 @default.
- W3201006174 creator A5052443077 @default.
- W3201006174 creator A5071525239 @default.
- W3201006174 date "2021-01-01" @default.
- W3201006174 modified "2023-10-17" @default.
- W3201006174 title "Marginal Likelihood Maximization Based Fast Array Manifold Matrix Learning for Direction of Arrival Estimation" @default.
- W3201006174 cites W1986931325 @default.
- W3201006174 cites W1997222146 @default.
- W3201006174 cites W1999580681 @default.
- W3201006174 cites W2000539560 @default.
- W3201006174 cites W2016506370 @default.
- W3201006174 cites W2020320434 @default.
- W3201006174 cites W2028823365 @default.
- W3201006174 cites W2035657168 @default.
- W3201006174 cites W2068039805 @default.
- W3201006174 cites W2071284784 @default.
- W3201006174 cites W2082029531 @default.
- W3201006174 cites W2103519107 @default.
- W3201006174 cites W2113638573 @default.
- W3201006174 cites W2128131274 @default.
- W3201006174 cites W2128439740 @default.
- W3201006174 cites W2128659236 @default.
- W3201006174 cites W2135046866 @default.
- W3201006174 cites W2135338342 @default.
- W3201006174 cites W2146000945 @default.
- W3201006174 cites W2148154358 @default.
- W3201006174 cites W2149755721 @default.
- W3201006174 cites W2151693816 @default.
- W3201006174 cites W2161623414 @default.
- W3201006174 cites W2162654459 @default.
- W3201006174 cites W2162876243 @default.
- W3201006174 cites W2264830470 @default.
- W3201006174 cites W2513373031 @default.
- W3201006174 cites W2554305184 @default.
- W3201006174 cites W2768966190 @default.
- W3201006174 cites W2887288499 @default.
- W3201006174 cites W2962979026 @default.
- W3201006174 cites W2967407817 @default.
- W3201006174 cites W3031056847 @default.
- W3201006174 cites W3041113865 @default.
- W3201006174 doi "https://doi.org/10.1109/tsp.2021.3112922" @default.
- W3201006174 hasPublicationYear "2021" @default.
- W3201006174 type Work @default.
- W3201006174 sameAs 3201006174 @default.
- W3201006174 citedByCount "4" @default.
- W3201006174 countsByYear W32010061742022 @default.
- W3201006174 countsByYear W32010061742023 @default.
- W3201006174 crossrefType "journal-article" @default.
- W3201006174 hasAuthorship W3201006174A5022275919 @default.
- W3201006174 hasAuthorship W3201006174A5035376596 @default.
- W3201006174 hasAuthorship W3201006174A5047844850 @default.
- W3201006174 hasAuthorship W3201006174A5052443077 @default.
- W3201006174 hasAuthorship W3201006174A5071525239 @default.
- W3201006174 hasConcept C106487976 @default.
- W3201006174 hasConcept C11413529 @default.
- W3201006174 hasConcept C126255220 @default.
- W3201006174 hasConcept C127413603 @default.
- W3201006174 hasConcept C153180895 @default.
- W3201006174 hasConcept C154945302 @default.
- W3201006174 hasConcept C159985019 @default.
- W3201006174 hasConcept C167928553 @default.
- W3201006174 hasConcept C172051844 @default.
- W3201006174 hasConcept C179799912 @default.
- W3201006174 hasConcept C187691185 @default.
- W3201006174 hasConcept C192562407 @default.
- W3201006174 hasConcept C21822782 @default.
- W3201006174 hasConcept C2524010 @default.
- W3201006174 hasConcept C2776330181 @default.
- W3201006174 hasConcept C2778770139 @default.
- W3201006174 hasConcept C33923547 @default.
- W3201006174 hasConcept C41008148 @default.
- W3201006174 hasConcept C529865628 @default.
- W3201006174 hasConcept C76155785 @default.
- W3201006174 hasConcept C78519656 @default.
- W3201006174 hasConcept C89106044 @default.
- W3201006174 hasConceptScore W3201006174C106487976 @default.
- W3201006174 hasConceptScore W3201006174C11413529 @default.
- W3201006174 hasConceptScore W3201006174C126255220 @default.
- W3201006174 hasConceptScore W3201006174C127413603 @default.
- W3201006174 hasConceptScore W3201006174C153180895 @default.
- W3201006174 hasConceptScore W3201006174C154945302 @default.
- W3201006174 hasConceptScore W3201006174C159985019 @default.
- W3201006174 hasConceptScore W3201006174C167928553 @default.
- W3201006174 hasConceptScore W3201006174C172051844 @default.
- W3201006174 hasConceptScore W3201006174C179799912 @default.
- W3201006174 hasConceptScore W3201006174C187691185 @default.
- W3201006174 hasConceptScore W3201006174C192562407 @default.
- W3201006174 hasConceptScore W3201006174C21822782 @default.
- W3201006174 hasConceptScore W3201006174C2524010 @default.
- W3201006174 hasConceptScore W3201006174C2776330181 @default.
- W3201006174 hasConceptScore W3201006174C2778770139 @default.
- W3201006174 hasConceptScore W3201006174C33923547 @default.
- W3201006174 hasConceptScore W3201006174C41008148 @default.
- W3201006174 hasConceptScore W3201006174C529865628 @default.