Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201020199> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3201020199 abstract "Abstract Background Understanding the spatial–temporal distribution characteristics of urban road traffic accidents is important for urban road traffic safety management. Based on the road traffic data of Wales in 2017, the spatial–temporal distribution of accidents is formed. Methods The density analysis method is used to identify the areas with high accident incidence and the areas with high accident severity. Then, two types of spatial clustering analysis models, outlier analysis and hot spot analysis are used to further identify the regions with high accident severity. Results The results of density analysis and cluster analysis are compared. The results of density analysis show that, in terms of accident frequency and accident severity, Swansea, Neath Port Talbot, Bridgend, Merthyr Tydfil, Cardiff, Caerphilly, Newport, Denbighshire, Vale of Glamorgan, Rhondda Cynon Taff, Flintshire and Wrexham have high accident frequency and accident severity per unit area. Cluster analysis results are similar to the density analysis. Finally, the temporal distribution characteristics of traffic accidents are analyzed according to month, week, day and hour. Accidents are concentrated in July and August, frequently in the morning rush hour and at dusk, with the most accidents occurring on Saturday. Conclusions By comparing the two methods, it can be concluded that the density analysis is simple and easy to understand, which is conducive to understanding the spatial distribution characteristics of urban traffic accidents directly. Cluster analysis can be accurate to the accident point and obtain the clustering characteristics of road accidents." @default.
- W3201020199 created "2021-09-27" @default.
- W3201020199 creator A5012495508 @default.
- W3201020199 creator A5075091788 @default.
- W3201020199 creator A5088921081 @default.
- W3201020199 date "2021-09-10" @default.
- W3201020199 modified "2023-10-07" @default.
- W3201020199 title "GIS-based analysis of spatial–temporal correlations of urban traffic accidents" @default.
- W3201020199 cites W1964908599 @default.
- W3201020199 cites W1969005134 @default.
- W3201020199 cites W1994231679 @default.
- W3201020199 cites W2034179702 @default.
- W3201020199 cites W2040026814 @default.
- W3201020199 cites W2077710654 @default.
- W3201020199 cites W2162391263 @default.
- W3201020199 cites W2461420233 @default.
- W3201020199 cites W2606330674 @default.
- W3201020199 cites W2617125006 @default.
- W3201020199 cites W2756459200 @default.
- W3201020199 cites W2780031658 @default.
- W3201020199 cites W2944575822 @default.
- W3201020199 cites W2994488661 @default.
- W3201020199 doi "https://doi.org/10.1186/s12544-021-00509-y" @default.
- W3201020199 hasPublicationYear "2021" @default.
- W3201020199 type Work @default.
- W3201020199 sameAs 3201020199 @default.
- W3201020199 citedByCount "8" @default.
- W3201020199 countsByYear W32010201992022 @default.
- W3201020199 countsByYear W32010201992023 @default.
- W3201020199 crossrefType "journal-article" @default.
- W3201020199 hasAuthorship W3201020199A5012495508 @default.
- W3201020199 hasAuthorship W3201020199A5075091788 @default.
- W3201020199 hasAuthorship W3201020199A5088921081 @default.
- W3201020199 hasBestOaLocation W32010201991 @default.
- W3201020199 hasConcept C105795698 @default.
- W3201020199 hasConcept C127413603 @default.
- W3201020199 hasConcept C205649164 @default.
- W3201020199 hasConcept C22212356 @default.
- W3201020199 hasConcept C2777016058 @default.
- W3201020199 hasConcept C2780591428 @default.
- W3201020199 hasConcept C33923547 @default.
- W3201020199 hasConcept C39432304 @default.
- W3201020199 hasConcept C58640448 @default.
- W3201020199 hasConcept C62649853 @default.
- W3201020199 hasConcept C73555534 @default.
- W3201020199 hasConceptScore W3201020199C105795698 @default.
- W3201020199 hasConceptScore W3201020199C127413603 @default.
- W3201020199 hasConceptScore W3201020199C205649164 @default.
- W3201020199 hasConceptScore W3201020199C22212356 @default.
- W3201020199 hasConceptScore W3201020199C2777016058 @default.
- W3201020199 hasConceptScore W3201020199C2780591428 @default.
- W3201020199 hasConceptScore W3201020199C33923547 @default.
- W3201020199 hasConceptScore W3201020199C39432304 @default.
- W3201020199 hasConceptScore W3201020199C58640448 @default.
- W3201020199 hasConceptScore W3201020199C62649853 @default.
- W3201020199 hasConceptScore W3201020199C73555534 @default.
- W3201020199 hasIssue "1" @default.
- W3201020199 hasLocation W32010201991 @default.
- W3201020199 hasLocation W32010201992 @default.
- W3201020199 hasOpenAccess W3201020199 @default.
- W3201020199 hasPrimaryLocation W32010201991 @default.
- W3201020199 hasRelatedWork W1534720161 @default.
- W3201020199 hasRelatedWork W2083665254 @default.
- W3201020199 hasRelatedWork W2132641928 @default.
- W3201020199 hasRelatedWork W2393816671 @default.
- W3201020199 hasRelatedWork W2804364458 @default.
- W3201020199 hasRelatedWork W2804957450 @default.
- W3201020199 hasRelatedWork W2942177010 @default.
- W3201020199 hasRelatedWork W4298130764 @default.
- W3201020199 hasRelatedWork W4310225030 @default.
- W3201020199 hasRelatedWork W576903456 @default.
- W3201020199 hasVolume "13" @default.
- W3201020199 isParatext "false" @default.
- W3201020199 isRetracted "false" @default.
- W3201020199 magId "3201020199" @default.
- W3201020199 workType "article" @default.