Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201023716> ?p ?o ?g. }
- W3201023716 abstract "The spatial variability of land cover in cities results in a heterogeneous urban microclimate, which is often not represented with regulatory meteorological sensor networks. Crowdsourced sensor networks have the potential to address this shortcoming with real-time and fine-grained temperature measurements across cities. We use crowdsourced data from over 500 citizen weather stations during summer in Sydney, Australia, combined with 100-m land use and Local Climate Zone (LCZ) maps to explore intra-urban variabilities in air temperature. Sydney presents unique drivers for spatio-temporal variability, with its climate influenced by the ocean, mountainous topography, and diverse urban land use. Here, we explore the interplay of geography with urban form and fabric on spatial variability in urban temperatures. The crowdsourced data consists of 2.3 million data points that were quality controlled and compared with reference data from five synoptic weather stations. Crowdsourced stations measured higher night-time temperatures, higher maximum temperatures on warm days, and cooler maximum temperatures on cool days compared to the reference stations. These differences are likely due to siting, with crowdsourced weather stations closer to anthropogenic heat emissions, urban materials with high thermal inertia, and in areas of reduced sky view factor. Distance from the coast was found to be the dominant factor impacting the spatial variability in urban temperatures, with diurnal temperature range greater for sensors located inland. Further differences in urban temperature could be explained by spatial variability in urban land-use and land-cover. Temperature varied both within and between LCZs across the city. Crowdsourced nocturnal temperatures were particularly sensitive to surrounding land cover, with lower temperatures in regions with higher vegetation cover, and higher temperatures in regions with more impervious surfaces. Crowdsourced weather stations provide highly relevant data for health monitoring and urban planning, however, there are several challenges to overcome to interpret this data including a lack of metadata and an uneven distribution of stations with a possible socio-economic bias. The sheer number of crowdsourced weather stations available can provide a high-resolution understanding of the variability of urban heat that is not possible to obtain via traditional networks." @default.
- W3201023716 created "2021-09-27" @default.
- W3201023716 creator A5009757469 @default.
- W3201023716 creator A5022061676 @default.
- W3201023716 creator A5037757235 @default.
- W3201023716 creator A5051830713 @default.
- W3201023716 creator A5055457137 @default.
- W3201023716 creator A5058303891 @default.
- W3201023716 creator A5074017048 @default.
- W3201023716 date "2021-09-13" @default.
- W3201023716 modified "2023-10-18" @default.
- W3201023716 title "Combining High-Resolution Land Use Data With Crowdsourced Air Temperature to Investigate Intra-Urban Microclimate" @default.
- W3201023716 cites W1517195678 @default.
- W3201023716 cites W1959213299 @default.
- W3201023716 cites W1968771685 @default.
- W3201023716 cites W2010630354 @default.
- W3201023716 cites W2019822358 @default.
- W3201023716 cites W2030737358 @default.
- W3201023716 cites W2042368173 @default.
- W3201023716 cites W2050263501 @default.
- W3201023716 cites W2052326455 @default.
- W3201023716 cites W2108017618 @default.
- W3201023716 cites W2144677022 @default.
- W3201023716 cites W2173488040 @default.
- W3201023716 cites W2285137062 @default.
- W3201023716 cites W2413417291 @default.
- W3201023716 cites W2511004707 @default.
- W3201023716 cites W2560347871 @default.
- W3201023716 cites W2583977467 @default.
- W3201023716 cites W2592776641 @default.
- W3201023716 cites W2610481125 @default.
- W3201023716 cites W2762855758 @default.
- W3201023716 cites W2791956878 @default.
- W3201023716 cites W2801073990 @default.
- W3201023716 cites W2886265353 @default.
- W3201023716 cites W2888652231 @default.
- W3201023716 cites W2889124453 @default.
- W3201023716 cites W2954042588 @default.
- W3201023716 cites W2988224823 @default.
- W3201023716 cites W3014089499 @default.
- W3201023716 cites W3049727136 @default.
- W3201023716 cites W3088034971 @default.
- W3201023716 cites W3109606069 @default.
- W3201023716 cites W3136360321 @default.
- W3201023716 cites W3159093802 @default.
- W3201023716 cites W3164212919 @default.
- W3201023716 cites W3165702827 @default.
- W3201023716 cites W4229530126 @default.
- W3201023716 cites W4245972137 @default.
- W3201023716 cites W4362131110 @default.
- W3201023716 doi "https://doi.org/10.3389/fenvs.2021.720323" @default.
- W3201023716 hasPublicationYear "2021" @default.
- W3201023716 type Work @default.
- W3201023716 sameAs 3201023716 @default.
- W3201023716 citedByCount "15" @default.
- W3201023716 countsByYear W32010237162021 @default.
- W3201023716 countsByYear W32010237162022 @default.
- W3201023716 countsByYear W32010237162023 @default.
- W3201023716 crossrefType "journal-article" @default.
- W3201023716 hasAuthorship W3201023716A5009757469 @default.
- W3201023716 hasAuthorship W3201023716A5022061676 @default.
- W3201023716 hasAuthorship W3201023716A5037757235 @default.
- W3201023716 hasAuthorship W3201023716A5051830713 @default.
- W3201023716 hasAuthorship W3201023716A5055457137 @default.
- W3201023716 hasAuthorship W3201023716A5058303891 @default.
- W3201023716 hasAuthorship W3201023716A5074017048 @default.
- W3201023716 hasBestOaLocation W32010237161 @default.
- W3201023716 hasConcept C100970517 @default.
- W3201023716 hasConcept C105795698 @default.
- W3201023716 hasConcept C126314574 @default.
- W3201023716 hasConcept C127313418 @default.
- W3201023716 hasConcept C153294291 @default.
- W3201023716 hasConcept C158049464 @default.
- W3201023716 hasConcept C159985019 @default.
- W3201023716 hasConcept C166957645 @default.
- W3201023716 hasConcept C17744445 @default.
- W3201023716 hasConcept C18903297 @default.
- W3201023716 hasConcept C192562407 @default.
- W3201023716 hasConcept C199539241 @default.
- W3201023716 hasConcept C204323151 @default.
- W3201023716 hasConcept C205649164 @default.
- W3201023716 hasConcept C2777129202 @default.
- W3201023716 hasConcept C2780648208 @default.
- W3201023716 hasConcept C2983363897 @default.
- W3201023716 hasConcept C2994001127 @default.
- W3201023716 hasConcept C32957820 @default.
- W3201023716 hasConcept C33923547 @default.
- W3201023716 hasConcept C39432304 @default.
- W3201023716 hasConcept C39853841 @default.
- W3201023716 hasConcept C4792198 @default.
- W3201023716 hasConcept C49204034 @default.
- W3201023716 hasConcept C54005896 @default.
- W3201023716 hasConcept C62230096 @default.
- W3201023716 hasConcept C86803240 @default.
- W3201023716 hasConcept C94747663 @default.
- W3201023716 hasConceptScore W3201023716C100970517 @default.
- W3201023716 hasConceptScore W3201023716C105795698 @default.
- W3201023716 hasConceptScore W3201023716C126314574 @default.
- W3201023716 hasConceptScore W3201023716C127313418 @default.
- W3201023716 hasConceptScore W3201023716C153294291 @default.