Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201062783> ?p ?o ?g. }
- W3201062783 endingPage "709" @default.
- W3201062783 startingPage "687" @default.
- W3201062783 abstract "Significance: Accurately predicting wound healing trajectories is difficult for wound care clinicians due to the complex and dynamic processes involved in wound healing. Wound care teams capture images of wounds during clinical visits generating big datasets over time. Developing novel artificial intelligence (AI) systems can help clinicians diagnose, assess the effectiveness of therapy, and predict healing outcomes. Recent Advances: Rapid developments in computer processing have enabled the development of AI-based systems that can improve the diagnosis and effectiveness of therapy in various clinical specializations. In the past decade, we have witnessed AI revolutionizing all types of medical imaging like X-ray, ultrasound, computed tomography, magnetic resonance imaging, etc., but AI-based systems remain to be developed clinically and computationally for high-quality wound care that can result in better patient outcomes. Critical Issues: In the current standard of care, collecting wound images on every clinical visit, interpreting and archiving the data are cumbersome and time consuming. Commercial platforms are developed to capture images, perform wound measurements, and provide clinicians with a workflow for diagnosis, but AI-based systems are still in their infancy. This systematic review summarizes the breadth and depth of the most recent and relevant work in intelligent image-based data analysis and system developments for wound assessment. Future Directions: With increasing availabilities of massive data (wound images, wound-specific electronic health records, etc.) as well as powerful computing resources, AI-based digital platforms will play a significant role in delivering data-driven care to people suffering from debilitating chronic wounds." @default.
- W3201062783 created "2021-09-27" @default.
- W3201062783 creator A5009656684 @default.
- W3201062783 creator A5011262044 @default.
- W3201062783 creator A5026902410 @default.
- W3201062783 creator A5035530486 @default.
- W3201062783 creator A5040845826 @default.
- W3201062783 creator A5062032398 @default.
- W3201062783 date "2022-12-01" @default.
- W3201062783 modified "2023-10-16" @default.
- W3201062783 title "Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review" @default.
- W3201062783 cites W1491944205 @default.
- W3201062783 cites W1529748067 @default.
- W3201062783 cites W180993227 @default.
- W3201062783 cites W1952036469 @default.
- W3201062783 cites W1965839667 @default.
- W3201062783 cites W1970964804 @default.
- W3201062783 cites W1974557101 @default.
- W3201062783 cites W1979661758 @default.
- W3201062783 cites W1983671562 @default.
- W3201062783 cites W1983922716 @default.
- W3201062783 cites W1989464230 @default.
- W3201062783 cites W1989544085 @default.
- W3201062783 cites W1990286477 @default.
- W3201062783 cites W1993751961 @default.
- W3201062783 cites W2006337445 @default.
- W3201062783 cites W2006609734 @default.
- W3201062783 cites W2006808743 @default.
- W3201062783 cites W2012451945 @default.
- W3201062783 cites W2019305905 @default.
- W3201062783 cites W2021609585 @default.
- W3201062783 cites W2026427014 @default.
- W3201062783 cites W2026975823 @default.
- W3201062783 cites W2027866357 @default.
- W3201062783 cites W2027966311 @default.
- W3201062783 cites W2028190305 @default.
- W3201062783 cites W2030932496 @default.
- W3201062783 cites W2038569144 @default.
- W3201062783 cites W2042667699 @default.
- W3201062783 cites W2048869073 @default.
- W3201062783 cites W2049608274 @default.
- W3201062783 cites W2049617691 @default.
- W3201062783 cites W2050698349 @default.
- W3201062783 cites W2054672934 @default.
- W3201062783 cites W2061692071 @default.
- W3201062783 cites W2074746294 @default.
- W3201062783 cites W2077631914 @default.
- W3201062783 cites W2088276904 @default.
- W3201062783 cites W2090670669 @default.
- W3201062783 cites W2094128557 @default.
- W3201062783 cites W2097834427 @default.
- W3201062783 cites W2102811505 @default.
- W3201062783 cites W2105124081 @default.
- W3201062783 cites W2105511530 @default.
- W3201062783 cites W2109234023 @default.
- W3201062783 cites W2116618839 @default.
- W3201062783 cites W2150716843 @default.
- W3201062783 cites W2161309890 @default.
- W3201062783 cites W2170466541 @default.
- W3201062783 cites W2204156286 @default.
- W3201062783 cites W2261074806 @default.
- W3201062783 cites W2306220511 @default.
- W3201062783 cites W2312733742 @default.
- W3201062783 cites W2323315354 @default.
- W3201062783 cites W2333888403 @default.
- W3201062783 cites W2415666100 @default.
- W3201062783 cites W2555943799 @default.
- W3201062783 cites W2588704750 @default.
- W3201062783 cites W2592929672 @default.
- W3201062783 cites W2772101491 @default.
- W3201062783 cites W2774288077 @default.
- W3201062783 cites W2786204509 @default.
- W3201062783 cites W2789325239 @default.
- W3201062783 cites W2791011305 @default.
- W3201062783 cites W2791787351 @default.
- W3201062783 cites W2809208303 @default.
- W3201062783 cites W2886848602 @default.
- W3201062783 cites W2890781352 @default.
- W3201062783 cites W2916945592 @default.
- W3201062783 cites W2938965777 @default.
- W3201062783 cites W2954074628 @default.
- W3201062783 cites W2963500988 @default.
- W3201062783 cites W2963957999 @default.
- W3201062783 cites W2964274014 @default.
- W3201062783 cites W2966622385 @default.
- W3201062783 cites W2967307920 @default.
- W3201062783 cites W2972612047 @default.
- W3201062783 cites W2978628650 @default.
- W3201062783 cites W3016019826 @default.
- W3201062783 cites W3033447868 @default.
- W3201062783 cites W3041135679 @default.
- W3201062783 cites W3092760571 @default.
- W3201062783 cites W3111142877 @default.
- W3201062783 cites W3121459991 @default.
- W3201062783 cites W3139358517 @default.
- W3201062783 cites W926893388 @default.
- W3201062783 doi "https://doi.org/10.1089/wound.2021.0091" @default.
- W3201062783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34544270" @default.