Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201094711> ?p ?o ?g. }
- W3201094711 endingPage "127459" @default.
- W3201094711 startingPage "127444" @default.
- W3201094711 abstract "Crowd counting considers one of the most significant and challenging issues in computer vision and deep learning communities, whose applications are being utilized for various tasks. While this issue is well studied, it remains an open challenge to manage perspective distortions and scale variations. How well these problems are resolved has a huge impact on predicting a high-quality crowd density map. In this study, a hybrid and modified deep neural network (U-ASD Net), based on U-Net and adaptive scenario discovery (ASD), is proposed to get precise and effective crowd counting. The U part is produced by replacing the nearest upsampling in the encoder of U-Net with max-unpooling. This modification provides a better crowd counting performance by capturing more spatial information. The max-unpooling layers upsample the feature maps based on the max locations held from the downsampling process. The ASD part is constructed with three light pathways, two of which have been learned to reflect various densities of the crowd and define the appropriate geometric configuration employing various sizes of the receptive field. The third pathway is an adaptation path, which implicitly discovers and models complex scenarios to recalibrate pathway-wise responses adaptively. ASD has no additional branches to avoid increasing the complexity. The designed model is end-to-end trainable. This integration provides an effective model to count crowds in both dense and sparse datasets. It also predicts an elevated quality density map with a high structural similarity index and a high peak signal-to-noise ratio. Several comprehensive experiments on four popular datasets for crowd counting have been carried out to demonstrate the proposed method’s promising performance compared to other state-of-the-art approaches. The proposed model achieves the lowest count error in terms of the MAE in ShanghaiTech Part A, Part B, and Mall datasets with 64.6, 7.5, and 1.8, respectively. Moreover, it achieves the lowest count error in terms of the MSE in ShanghaiTech Part B, UCF CC 50, UCSD, and Mall datasets with 12.4, 217.8, 2.1, 2.2, respectively. In addition, the proposed model accomplishes the best quality density maps on all the utilized datasets. Furthermore, a new dataset with its manual annotations, called Haramain with three different scenes and different densities, is introduced and used for evaluating the U-ASD Net." @default.
- W3201094711 created "2021-09-27" @default.
- W3201094711 creator A5001551147 @default.
- W3201094711 creator A5007511975 @default.
- W3201094711 creator A5031515973 @default.
- W3201094711 date "2021-01-01" @default.
- W3201094711 modified "2023-09-23" @default.
- W3201094711 title "U-ASD Net: Supervised Crowd Counting Based on Semantic Segmentation and Adaptive Scenario Discovery" @default.
- W3201094711 cites W1910776219 @default.
- W3201094711 cites W1976959044 @default.
- W3201094711 cites W2058907003 @default.
- W3201094711 cites W2072232009 @default.
- W3201094711 cites W2075875861 @default.
- W3201094711 cites W2123175289 @default.
- W3201094711 cites W2133665775 @default.
- W3201094711 cites W2207893099 @default.
- W3201094711 cites W2343818649 @default.
- W3201094711 cites W2463631526 @default.
- W3201094711 cites W2512075532 @default.
- W3201094711 cites W2516908515 @default.
- W3201094711 cites W2520826941 @default.
- W3201094711 cites W2528636510 @default.
- W3201094711 cites W2563705555 @default.
- W3201094711 cites W2580968656 @default.
- W3201094711 cites W2605233232 @default.
- W3201094711 cites W2608692176 @default.
- W3201094711 cites W2741077351 @default.
- W3201094711 cites W2745597836 @default.
- W3201094711 cites W2798489385 @default.
- W3201094711 cites W2798490576 @default.
- W3201094711 cites W2798781811 @default.
- W3201094711 cites W2884960332 @default.
- W3201094711 cites W2895051362 @default.
- W3201094711 cites W2941288645 @default.
- W3201094711 cites W2945574898 @default.
- W3201094711 cites W2962720716 @default.
- W3201094711 cites W2962832028 @default.
- W3201094711 cites W2963035940 @default.
- W3201094711 cites W2963231953 @default.
- W3201094711 cites W2963728677 @default.
- W3201094711 cites W2963893037 @default.
- W3201094711 cites W2964018834 @default.
- W3201094711 cites W2964203052 @default.
- W3201094711 cites W2964209782 @default.
- W3201094711 cites W2964264515 @default.
- W3201094711 cites W2966271765 @default.
- W3201094711 cites W2966298261 @default.
- W3201094711 cites W2969620138 @default.
- W3201094711 cites W2982007926 @default.
- W3201094711 cites W2990733877 @default.
- W3201094711 cites W2995304495 @default.
- W3201094711 cites W3005802091 @default.
- W3201094711 cites W3013865762 @default.
- W3201094711 cites W3023696206 @default.
- W3201094711 cites W3025800305 @default.
- W3201094711 cites W3046161527 @default.
- W3201094711 cites W3086779792 @default.
- W3201094711 cites W3092147969 @default.
- W3201094711 cites W3104620978 @default.
- W3201094711 cites W3107265074 @default.
- W3201094711 cites W3126955194 @default.
- W3201094711 cites W3131644474 @default.
- W3201094711 cites W3152836081 @default.
- W3201094711 cites W3155536271 @default.
- W3201094711 cites W3160423468 @default.
- W3201094711 cites W3179409472 @default.
- W3201094711 cites W3190074189 @default.
- W3201094711 doi "https://doi.org/10.1109/access.2021.3112174" @default.
- W3201094711 hasPublicationYear "2021" @default.
- W3201094711 type Work @default.
- W3201094711 sameAs 3201094711 @default.
- W3201094711 citedByCount "4" @default.
- W3201094711 countsByYear W32010947112022 @default.
- W3201094711 countsByYear W32010947112023 @default.
- W3201094711 crossrefType "journal-article" @default.
- W3201094711 hasAuthorship W3201094711A5001551147 @default.
- W3201094711 hasAuthorship W3201094711A5007511975 @default.
- W3201094711 hasAuthorship W3201094711A5031515973 @default.
- W3201094711 hasBestOaLocation W32010947111 @default.
- W3201094711 hasConcept C103278499 @default.
- W3201094711 hasConcept C110384440 @default.
- W3201094711 hasConcept C115961682 @default.
- W3201094711 hasConcept C119857082 @default.
- W3201094711 hasConcept C124101348 @default.
- W3201094711 hasConcept C138885662 @default.
- W3201094711 hasConcept C153180895 @default.
- W3201094711 hasConcept C154945302 @default.
- W3201094711 hasConcept C199360897 @default.
- W3201094711 hasConcept C2776401178 @default.
- W3201094711 hasConcept C2777735758 @default.
- W3201094711 hasConcept C2777852691 @default.
- W3201094711 hasConcept C38652104 @default.
- W3201094711 hasConcept C41008148 @default.
- W3201094711 hasConcept C41895202 @default.
- W3201094711 hasConcept C43521106 @default.
- W3201094711 hasConcept C89600930 @default.
- W3201094711 hasConcept C99498987 @default.
- W3201094711 hasConceptScore W3201094711C103278499 @default.