Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201112449> ?p ?o ?g. }
- W3201112449 endingPage "2483" @default.
- W3201112449 startingPage "2483" @default.
- W3201112449 abstract "Graphitic carbon nitride (g-C3N4) with a porous nano-structure, nitrogen vacancies, and oxygen-doping was prepared by the calcination method. Then, it was combined with ZnIn2S4 nanosheets containing zinc vacancies to construct a three-dimensional (3D) flower-like Z-scheme heterojunction (pCN-N/ZIS-Z), which was used for photocatalytic hydrogen evolution and the degradation of mixed pollutants. The constructed Z-scheme heterojunction improved the efficiency of photogenerated charges separation and migration, and the large surface area and porous characteristics provided more active sites. Doping and defect engineering can change the bandgap structure to improve the utilization of visible light, and can also capture photogenerated electrons to inhibit recombination, so as to promote the use of photogenerated electron-hole pairs in the photocatalytic redox process. Heterojunction and defect engineering synergized to form a continuous and efficient conductive operation framework, which achieves the hydrogen production of pCN-N/ZIS-Z (9189.8 µmol·h−1·g−1) at 58.9 times that of g-C3N4 (155.9 µmol·h−1·g−1), and the degradation rates of methyl orange and metronidazole in the mixed solution were 98.7% and 92.5%, respectively. Our research provides potential ideas for constructing a green and environmentally friendly Z-scheme heterojunction catalyst based on defect engineering to address the energy crisis and environmental restoration." @default.
- W3201112449 created "2021-09-27" @default.
- W3201112449 creator A5000432967 @default.
- W3201112449 creator A5001023262 @default.
- W3201112449 creator A5028488395 @default.
- W3201112449 creator A5056442022 @default.
- W3201112449 creator A5087772691 @default.
- W3201112449 creator A5088173829 @default.
- W3201112449 creator A5089831961 @default.
- W3201112449 date "2021-09-24" @default.
- W3201112449 modified "2023-10-16" @default.
- W3201112449 title "Flower-Like Dual-Defective Z-Scheme Heterojunction g-C3N4/ZnIn2S4 High-Efficiency Photocatalytic Hydrogen Evolution and Degradation of Mixed Pollutants" @default.
- W3201112449 cites W1165289245 @default.
- W3201112449 cites W1971855166 @default.
- W3201112449 cites W2000881355 @default.
- W3201112449 cites W2002000310 @default.
- W3201112449 cites W2002140666 @default.
- W3201112449 cites W2010633389 @default.
- W3201112449 cites W2024858214 @default.
- W3201112449 cites W2031970651 @default.
- W3201112449 cites W2038955396 @default.
- W3201112449 cites W2054354929 @default.
- W3201112449 cites W2056660866 @default.
- W3201112449 cites W2082579704 @default.
- W3201112449 cites W2160714914 @default.
- W3201112449 cites W2218002557 @default.
- W3201112449 cites W2236840925 @default.
- W3201112449 cites W2268869735 @default.
- W3201112449 cites W2416458438 @default.
- W3201112449 cites W2462037391 @default.
- W3201112449 cites W2563434591 @default.
- W3201112449 cites W2585592272 @default.
- W3201112449 cites W2614741941 @default.
- W3201112449 cites W2725556874 @default.
- W3201112449 cites W2726709378 @default.
- W3201112449 cites W2749287738 @default.
- W3201112449 cites W2752489104 @default.
- W3201112449 cites W2783893005 @default.
- W3201112449 cites W2791938165 @default.
- W3201112449 cites W2888540813 @default.
- W3201112449 cites W2895959497 @default.
- W3201112449 cites W2900945729 @default.
- W3201112449 cites W2907272995 @default.
- W3201112449 cites W2907561664 @default.
- W3201112449 cites W2910230156 @default.
- W3201112449 cites W2912349887 @default.
- W3201112449 cites W2913043479 @default.
- W3201112449 cites W2921910176 @default.
- W3201112449 cites W2938249226 @default.
- W3201112449 cites W2951200340 @default.
- W3201112449 cites W2962350738 @default.
- W3201112449 cites W2965863705 @default.
- W3201112449 cites W2966580712 @default.
- W3201112449 cites W2973413463 @default.
- W3201112449 cites W2974978733 @default.
- W3201112449 cites W2979030807 @default.
- W3201112449 cites W2980747676 @default.
- W3201112449 cites W2991129536 @default.
- W3201112449 cites W2994698361 @default.
- W3201112449 cites W2995308863 @default.
- W3201112449 cites W3002864071 @default.
- W3201112449 cites W3003906133 @default.
- W3201112449 cites W3004044567 @default.
- W3201112449 cites W3004993708 @default.
- W3201112449 cites W3006592661 @default.
- W3201112449 cites W3008053536 @default.
- W3201112449 cites W3036033058 @default.
- W3201112449 cites W3036413810 @default.
- W3201112449 cites W3037365425 @default.
- W3201112449 cites W3038152195 @default.
- W3201112449 cites W3039225761 @default.
- W3201112449 cites W3042249452 @default.
- W3201112449 cites W3044376552 @default.
- W3201112449 cites W3044956949 @default.
- W3201112449 cites W3046936046 @default.
- W3201112449 cites W3050543802 @default.
- W3201112449 cites W3084461121 @default.
- W3201112449 cites W3087999771 @default.
- W3201112449 cites W3088305089 @default.
- W3201112449 cites W3089883413 @default.
- W3201112449 cites W3090331196 @default.
- W3201112449 cites W3091816129 @default.
- W3201112449 cites W3093570425 @default.
- W3201112449 cites W3096880859 @default.
- W3201112449 cites W3108509562 @default.
- W3201112449 cites W3125801832 @default.
- W3201112449 cites W3133662571 @default.
- W3201112449 cites W3157534726 @default.
- W3201112449 cites W3195474908 @default.
- W3201112449 doi "https://doi.org/10.3390/nano11102483" @default.
- W3201112449 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8539809" @default.
- W3201112449 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34684924" @default.
- W3201112449 hasPublicationYear "2021" @default.
- W3201112449 type Work @default.
- W3201112449 sameAs 3201112449 @default.
- W3201112449 citedByCount "9" @default.
- W3201112449 countsByYear W32011124492022 @default.
- W3201112449 countsByYear W32011124492023 @default.