Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201117878> ?p ?o ?g. }
- W3201117878 endingPage "132267" @default.
- W3201117878 startingPage "132267" @default.
- W3201117878 abstract "This study investigated the solution for two environmental issues: excess of P in water and its deficiency in soil, which is restored by transferring the adsorbed P from water into the soil using eggshell as an adsorbent. The eggshells were calcined at different temperatures to improve their adsorption capacity, and evaluated for their physical/chemical properties and P adsorption capacity. The eggshells calcined at 800 °C (CES-800) had the highest P adsorption; CaCO3 decomposed into 23.6% of CaO and 40.8% of Ca(OH)2, eluting more Ca that reacted with soluble P in water. X-ray diffraction analysis confirmed that CES-800 removed P as hydroxylapatite by reacting with Ca. Pseudo-first-order and Langmuir models suitably described the kinetic and equilibrium of P adsorption by CES-800, respectively. The maximum adsorption capacity of CES-800 was 108.2 mg g−1. As the solution pH increased from 3 to 11, the adsorption amount decreased from 99.8 mg g−1 to 62.3 mg g−1. The feasibility of CES-800 as a filter medium was assessed using real lake water under dynamic flow conditions; > 90% of P removal was achieved at 158 h, and the P adsorbed was 11.5 mg g−1. When CES-800 and P adsorbed CES-800 (P-CES-800) were applied to the soil at the studied rates, the earthworms were unaffected by toxicity, suggesting the use of both adsorbents in soil without adverse effects. The shoot fresh weight, tiller number, and total dry weight significantly increased in P-CES-800 applied rice plants compared to the control plants, indicating that P-CES-800 can be a good alternative to conventional P-fertilizer in rice cultivation." @default.
- W3201117878 created "2021-09-27" @default.
- W3201117878 creator A5008480052 @default.
- W3201117878 creator A5019045529 @default.
- W3201117878 creator A5077896204 @default.
- W3201117878 creator A5079652072 @default.
- W3201117878 creator A5080068963 @default.
- W3201117878 creator A5085347961 @default.
- W3201117878 date "2022-01-01" @default.
- W3201117878 modified "2023-10-03" @default.
- W3201117878 title "Restoring phosphorus from water to soil: Using calcined eggshells for P adsorption and subsequent application of the adsorbent as a P fertilizer" @default.
- W3201117878 cites W1966234730 @default.
- W3201117878 cites W1966668788 @default.
- W3201117878 cites W1969252297 @default.
- W3201117878 cites W1974724367 @default.
- W3201117878 cites W1977422380 @default.
- W3201117878 cites W1977774800 @default.
- W3201117878 cites W1978015072 @default.
- W3201117878 cites W1979772617 @default.
- W3201117878 cites W1979860176 @default.
- W3201117878 cites W1980675007 @default.
- W3201117878 cites W1980715658 @default.
- W3201117878 cites W1980775435 @default.
- W3201117878 cites W1981254788 @default.
- W3201117878 cites W1981368163 @default.
- W3201117878 cites W1993612803 @default.
- W3201117878 cites W1995894975 @default.
- W3201117878 cites W1996410945 @default.
- W3201117878 cites W1998431972 @default.
- W3201117878 cites W2003940357 @default.
- W3201117878 cites W2004694161 @default.
- W3201117878 cites W2004732653 @default.
- W3201117878 cites W2008846841 @default.
- W3201117878 cites W2009959856 @default.
- W3201117878 cites W2012346132 @default.
- W3201117878 cites W2012995680 @default.
- W3201117878 cites W2017159948 @default.
- W3201117878 cites W2019392542 @default.
- W3201117878 cites W2020334886 @default.
- W3201117878 cites W2020993987 @default.
- W3201117878 cites W2024055584 @default.
- W3201117878 cites W2026065240 @default.
- W3201117878 cites W2026316836 @default.
- W3201117878 cites W2033960995 @default.
- W3201117878 cites W2035269493 @default.
- W3201117878 cites W2037012643 @default.
- W3201117878 cites W2037672126 @default.
- W3201117878 cites W2043951892 @default.
- W3201117878 cites W2047686821 @default.
- W3201117878 cites W2051566299 @default.
- W3201117878 cites W2059142139 @default.
- W3201117878 cites W2063984916 @default.
- W3201117878 cites W2065294645 @default.
- W3201117878 cites W2074261816 @default.
- W3201117878 cites W2076647082 @default.
- W3201117878 cites W2078853513 @default.
- W3201117878 cites W2083917617 @default.
- W3201117878 cites W2087834426 @default.
- W3201117878 cites W2089627829 @default.
- W3201117878 cites W2089775229 @default.
- W3201117878 cites W2090446290 @default.
- W3201117878 cites W2104281968 @default.
- W3201117878 cites W2131558643 @default.
- W3201117878 cites W2139592976 @default.
- W3201117878 cites W2150544267 @default.
- W3201117878 cites W2167068479 @default.
- W3201117878 cites W2317269023 @default.
- W3201117878 cites W2510541542 @default.
- W3201117878 cites W2528048712 @default.
- W3201117878 cites W2529985785 @default.
- W3201117878 cites W2534647780 @default.
- W3201117878 cites W2559072254 @default.
- W3201117878 cites W2559968007 @default.
- W3201117878 cites W2592207140 @default.
- W3201117878 cites W2736418256 @default.
- W3201117878 cites W2779670937 @default.
- W3201117878 cites W2780023192 @default.
- W3201117878 cites W2781517639 @default.
- W3201117878 cites W2805367084 @default.
- W3201117878 cites W2888151089 @default.
- W3201117878 cites W2907695372 @default.
- W3201117878 cites W2915108056 @default.
- W3201117878 cites W2921880292 @default.
- W3201117878 cites W2946583125 @default.
- W3201117878 cites W2970889170 @default.
- W3201117878 cites W3007950132 @default.
- W3201117878 cites W304749403 @default.
- W3201117878 cites W3049069747 @default.
- W3201117878 cites W3081519487 @default.
- W3201117878 cites W3092710136 @default.
- W3201117878 cites W3171569253 @default.
- W3201117878 cites W4252439946 @default.
- W3201117878 doi "https://doi.org/10.1016/j.chemosphere.2021.132267" @default.
- W3201117878 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34537455" @default.
- W3201117878 hasPublicationYear "2022" @default.
- W3201117878 type Work @default.
- W3201117878 sameAs 3201117878 @default.
- W3201117878 citedByCount "24" @default.