Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201156649> ?p ?o ?g. }
- W3201156649 endingPage "109492" @default.
- W3201156649 startingPage "109492" @default.
- W3201156649 abstract "Natural gas plays a crucial role in sustaining the economic development. The production behavior of natural gas reservoir is significantly affected by the connecting aquifer. To investigate the aquifer and reservoir properties, the pressure buildup well test is conducted and the pressure transient data need to be analyzed. However, the pressure transient data analysis usually involves a procedure to build an analytical or numerical model to predict the pressure transient dynamics. With the existence of many historical records on the well test data and advancement of machine learning method, a data-driven method is proposed here to automate the well test data analysis of water-drive gas reservoir. The dataset generated from the previous well test records is used as the training set for the machine learning method. To identify the water invasion mode, the random forest classification method is introduced, and the discrete linear segment slopes are extracted from the pressure derivative curve as the feature. To predict the pressure transient dynamics, the random forest regression method is proposed to construct a projection between the aquifer/reservoir properties and the pressure transient curves. Once the water invasion mode is determined and the data-driven model to predict the pressure transient dynamic is constructed, the ensemble Kalman filter is used to estimate the aquifer/reservoir properties from the well testing data. The results show that the random forest classification method can accurately identify the water invasion mode and the random forest regression based ensemble Kalman filter method can estimate the aquifer/reservoir properties accurately with the reduced uncertainty." @default.
- W3201156649 created "2021-09-27" @default.
- W3201156649 creator A5022576370 @default.
- W3201156649 creator A5026103572 @default.
- W3201156649 creator A5056576479 @default.
- W3201156649 creator A5075758666 @default.
- W3201156649 creator A5076861938 @default.
- W3201156649 creator A5086290026 @default.
- W3201156649 date "2022-01-01" @default.
- W3201156649 modified "2023-10-16" @default.
- W3201156649 title "An automated data-driven pressure transient analysis of water-drive gas reservoir through the coupled machine learning and ensemble Kalman filter method" @default.
- W3201156649 cites W1971441898 @default.
- W3201156649 cites W1978092795 @default.
- W3201156649 cites W1997299870 @default.
- W3201156649 cites W2000122377 @default.
- W3201156649 cites W2009104157 @default.
- W3201156649 cites W2024326516 @default.
- W3201156649 cites W2046372107 @default.
- W3201156649 cites W2048959172 @default.
- W3201156649 cites W2078327207 @default.
- W3201156649 cites W2095454627 @default.
- W3201156649 cites W2109002304 @default.
- W3201156649 cites W2126066253 @default.
- W3201156649 cites W2156886112 @default.
- W3201156649 cites W2157098139 @default.
- W3201156649 cites W2158682987 @default.
- W3201156649 cites W2204598605 @default.
- W3201156649 cites W2276544619 @default.
- W3201156649 cites W2288715986 @default.
- W3201156649 cites W2570995264 @default.
- W3201156649 cites W2614570149 @default.
- W3201156649 cites W2889287282 @default.
- W3201156649 cites W2911964244 @default.
- W3201156649 cites W29299745 @default.
- W3201156649 cites W2948893225 @default.
- W3201156649 cites W2971527941 @default.
- W3201156649 cites W2995841625 @default.
- W3201156649 cites W3006778670 @default.
- W3201156649 cites W3041244160 @default.
- W3201156649 cites W3044220684 @default.
- W3201156649 cites W3064120141 @default.
- W3201156649 cites W3116128379 @default.
- W3201156649 cites W4248539794 @default.
- W3201156649 doi "https://doi.org/10.1016/j.petrol.2021.109492" @default.
- W3201156649 hasPublicationYear "2022" @default.
- W3201156649 type Work @default.
- W3201156649 sameAs 3201156649 @default.
- W3201156649 citedByCount "6" @default.
- W3201156649 countsByYear W32011566492022 @default.
- W3201156649 countsByYear W32011566492023 @default.
- W3201156649 crossrefType "journal-article" @default.
- W3201156649 hasAuthorship W3201156649A5022576370 @default.
- W3201156649 hasAuthorship W3201156649A5026103572 @default.
- W3201156649 hasAuthorship W3201156649A5056576479 @default.
- W3201156649 hasAuthorship W3201156649A5075758666 @default.
- W3201156649 hasAuthorship W3201156649A5076861938 @default.
- W3201156649 hasAuthorship W3201156649A5086290026 @default.
- W3201156649 hasBestOaLocation W32011566491 @default.
- W3201156649 hasConcept C111919701 @default.
- W3201156649 hasConcept C124101348 @default.
- W3201156649 hasConcept C127413603 @default.
- W3201156649 hasConcept C154945302 @default.
- W3201156649 hasConcept C157286648 @default.
- W3201156649 hasConcept C16910744 @default.
- W3201156649 hasConcept C169258074 @default.
- W3201156649 hasConcept C187320778 @default.
- W3201156649 hasConcept C199360897 @default.
- W3201156649 hasConcept C206833254 @default.
- W3201156649 hasConcept C2779142798 @default.
- W3201156649 hasConcept C2780799671 @default.
- W3201156649 hasConcept C41008148 @default.
- W3201156649 hasConcept C75622301 @default.
- W3201156649 hasConcept C76177295 @default.
- W3201156649 hasConcept C78762247 @default.
- W3201156649 hasConcept C79334102 @default.
- W3201156649 hasConceptScore W3201156649C111919701 @default.
- W3201156649 hasConceptScore W3201156649C124101348 @default.
- W3201156649 hasConceptScore W3201156649C127413603 @default.
- W3201156649 hasConceptScore W3201156649C154945302 @default.
- W3201156649 hasConceptScore W3201156649C157286648 @default.
- W3201156649 hasConceptScore W3201156649C16910744 @default.
- W3201156649 hasConceptScore W3201156649C169258074 @default.
- W3201156649 hasConceptScore W3201156649C187320778 @default.
- W3201156649 hasConceptScore W3201156649C199360897 @default.
- W3201156649 hasConceptScore W3201156649C206833254 @default.
- W3201156649 hasConceptScore W3201156649C2779142798 @default.
- W3201156649 hasConceptScore W3201156649C2780799671 @default.
- W3201156649 hasConceptScore W3201156649C41008148 @default.
- W3201156649 hasConceptScore W3201156649C75622301 @default.
- W3201156649 hasConceptScore W3201156649C76177295 @default.
- W3201156649 hasConceptScore W3201156649C78762247 @default.
- W3201156649 hasConceptScore W3201156649C79334102 @default.
- W3201156649 hasFunder F4320321001 @default.
- W3201156649 hasFunder F4320326291 @default.
- W3201156649 hasFunder F4320334987 @default.
- W3201156649 hasFunder F4320335989 @default.
- W3201156649 hasLocation W32011566491 @default.
- W3201156649 hasOpenAccess W3201156649 @default.