Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201203371> ?p ?o ?g. }
- W3201203371 endingPage "672" @default.
- W3201203371 startingPage "658" @default.
- W3201203371 abstract "Deep learning-based applications for disease detection are essential tools for experts to effectively diagnose diseases at different stages. In this article, a new approach based on an evidence based fusion theory is proposed, allowing the combination of a set of deep learning classifiers to provide more accurate disease detection results. The main contribution of this work is the application of the Dempster–Shafer theory for the fusion of five pre trained convolutional neural networks including VGG16, Xception, InceptionV3, ResNet50, and DenseNet201 for the diagnosis of pneumonia from chest X-ray images. To evaluate this approach, experiments are conducted using a publicly available dataset containing more than 5800 chest X-ray images. The obtained results demonstrate that our approach provides excellent detection performance compared to other state-of-the-art methods; it achieves a precision of 97.5%, a recall of 98%, an f1-score of 97.8%, and an accuracy of 97.3%." @default.
- W3201203371 created "2021-09-27" @default.
- W3201203371 creator A5019842034 @default.
- W3201203371 creator A5042123158 @default.
- W3201203371 creator A5042485009 @default.
- W3201203371 creator A5046594432 @default.
- W3201203371 creator A5075661449 @default.
- W3201203371 date "2021-09-13" @default.
- W3201203371 modified "2023-10-11" @default.
- W3201203371 title "Fusion of convolutional neural networks based on Dempster–Shafer theory for automatic pneumonia detection from chest X‐ray images" @default.
- W3201203371 cites W1600834507 @default.
- W3201203371 cites W1955857676 @default.
- W3201203371 cites W1966333039 @default.
- W3201203371 cites W2097117768 @default.
- W3201203371 cites W2194775991 @default.
- W3201203371 cites W2531409750 @default.
- W3201203371 cites W2682360066 @default.
- W3201203371 cites W2757455114 @default.
- W3201203371 cites W2766491340 @default.
- W3201203371 cites W2791942584 @default.
- W3201203371 cites W2797694788 @default.
- W3201203371 cites W2887280559 @default.
- W3201203371 cites W2891756914 @default.
- W3201203371 cites W2919115771 @default.
- W3201203371 cites W2924911266 @default.
- W3201203371 cites W2940692219 @default.
- W3201203371 cites W2948666538 @default.
- W3201203371 cites W2963446712 @default.
- W3201203371 cites W2982533493 @default.
- W3201203371 cites W2998957378 @default.
- W3201203371 cites W3012544311 @default.
- W3201203371 cites W3013601031 @default.
- W3201203371 cites W3014041368 @default.
- W3201203371 cites W3015658722 @default.
- W3201203371 cites W3032218674 @default.
- W3201203371 cites W3040747093 @default.
- W3201203371 cites W3086811561 @default.
- W3201203371 cites W3093589062 @default.
- W3201203371 cites W3094319938 @default.
- W3201203371 cites W3128351894 @default.
- W3201203371 cites W3128758033 @default.
- W3201203371 cites W3132896347 @default.
- W3201203371 cites W3157943311 @default.
- W3201203371 cites W3160884538 @default.
- W3201203371 cites W3164443880 @default.
- W3201203371 cites W3167147947 @default.
- W3201203371 cites W3175365098 @default.
- W3201203371 cites W3182106307 @default.
- W3201203371 cites W3203473930 @default.
- W3201203371 doi "https://doi.org/10.1002/ima.22653" @default.
- W3201203371 hasPublicationYear "2021" @default.
- W3201203371 type Work @default.
- W3201203371 sameAs 3201203371 @default.
- W3201203371 citedByCount "21" @default.
- W3201203371 countsByYear W32012033712022 @default.
- W3201203371 countsByYear W32012033712023 @default.
- W3201203371 crossrefType "journal-article" @default.
- W3201203371 hasAuthorship W3201203371A5019842034 @default.
- W3201203371 hasAuthorship W3201203371A5042123158 @default.
- W3201203371 hasAuthorship W3201203371A5042485009 @default.
- W3201203371 hasAuthorship W3201203371A5046594432 @default.
- W3201203371 hasAuthorship W3201203371A5075661449 @default.
- W3201203371 hasConcept C108583219 @default.
- W3201203371 hasConcept C119857082 @default.
- W3201203371 hasConcept C138885662 @default.
- W3201203371 hasConcept C153180895 @default.
- W3201203371 hasConcept C154945302 @default.
- W3201203371 hasConcept C158525013 @default.
- W3201203371 hasConcept C178011137 @default.
- W3201203371 hasConcept C41008148 @default.
- W3201203371 hasConcept C41895202 @default.
- W3201203371 hasConcept C81363708 @default.
- W3201203371 hasConcept C81669768 @default.
- W3201203371 hasConceptScore W3201203371C108583219 @default.
- W3201203371 hasConceptScore W3201203371C119857082 @default.
- W3201203371 hasConceptScore W3201203371C138885662 @default.
- W3201203371 hasConceptScore W3201203371C153180895 @default.
- W3201203371 hasConceptScore W3201203371C154945302 @default.
- W3201203371 hasConceptScore W3201203371C158525013 @default.
- W3201203371 hasConceptScore W3201203371C178011137 @default.
- W3201203371 hasConceptScore W3201203371C41008148 @default.
- W3201203371 hasConceptScore W3201203371C41895202 @default.
- W3201203371 hasConceptScore W3201203371C81363708 @default.
- W3201203371 hasConceptScore W3201203371C81669768 @default.
- W3201203371 hasIssue "2" @default.
- W3201203371 hasLocation W32012033711 @default.
- W3201203371 hasOpenAccess W3201203371 @default.
- W3201203371 hasPrimaryLocation W32012033711 @default.
- W3201203371 hasRelatedWork W2337926734 @default.
- W3201203371 hasRelatedWork W2732542196 @default.
- W3201203371 hasRelatedWork W2738221750 @default.
- W3201203371 hasRelatedWork W2963958939 @default.
- W3201203371 hasRelatedWork W3166467183 @default.
- W3201203371 hasRelatedWork W4311257506 @default.
- W3201203371 hasRelatedWork W4319994054 @default.
- W3201203371 hasRelatedWork W4320802194 @default.
- W3201203371 hasRelatedWork W4327499916 @default.
- W3201203371 hasRelatedWork W564581980 @default.