Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201209654> ?p ?o ?g. }
- W3201209654 endingPage "2789" @default.
- W3201209654 startingPage "2773" @default.
- W3201209654 abstract "Abstract. The prediction of debris flows is relevant because this type of natural hazard can pose a threat to humans and infrastructure. Debris-flow (and landslide) early warning systems often rely on rainfall intensity–duration (ID) thresholds. Multiple competing methods exist for the determination of such ID thresholds but have not been objectively and thoroughly compared at multiple scales, and a validation and uncertainty assessment is often missing in their formulation. As a consequence, updating, interpreting, generalizing and comparing rainfall thresholds is challenging. Using a 17-year record of rainfall and 67 debris flows in a Swiss Alpine catchment (Illgraben), we determined ID thresholds and associated uncertainties as a function of record duration. Furthermore, we compared two methods for rainfall definition based on linear regression and/or true-skill-statistic maximization. The main difference between these approaches and the well-known frequentist method is that non-triggering rainfall events were also considered for obtaining ID-threshold parameters. Depending on the method applied, the ID-threshold parameters and their uncertainties differed significantly. We found that 25 debris flows are sufficient to constrain uncertainties in ID-threshold parameters to ±30 % for our study site. We further demonstrated the change in predictive performance of the two methods if a regional landslide data set with a regional rainfall product was used instead of a local one with local rainfall measurements. Hence, an important finding is that the ideal method for ID-threshold determination depends on the available landslide and rainfall data sets. Furthermore, for the local data set we tested if the ID-threshold performance can be increased by considering other rainfall properties (e.g. antecedent rainfall, maximum intensity) in a multivariate statistical learning algorithm based on decision trees (random forest). The highest predictive power was reached when the peak 30 min rainfall intensity was added to the ID variables, while no improvement was achieved by considering antecedent rainfall for debris-flow predictions in Illgraben. Although the increase in predictive performance with the random forest model over the classical ID threshold was small, such a framework could be valuable for future studies if more predictors are available from measured or modelled data." @default.
- W3201209654 created "2021-09-27" @default.
- W3201209654 creator A5010801785 @default.
- W3201209654 creator A5021458018 @default.
- W3201209654 creator A5023988759 @default.
- W3201209654 creator A5025329464 @default.
- W3201209654 creator A5052185723 @default.
- W3201209654 date "2021-09-10" @default.
- W3201209654 modified "2023-10-17" @default.
- W3201209654 title "Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment" @default.
- W3201209654 cites W1550027610 @default.
- W3201209654 cites W1564161272 @default.
- W3201209654 cites W1904075831 @default.
- W3201209654 cites W1963940439 @default.
- W3201209654 cites W1969711429 @default.
- W3201209654 cites W1978899134 @default.
- W3201209654 cites W1986647152 @default.
- W3201209654 cites W1987986134 @default.
- W3201209654 cites W1990984169 @default.
- W3201209654 cites W1991228102 @default.
- W3201209654 cites W1998743274 @default.
- W3201209654 cites W2004580578 @default.
- W3201209654 cites W2009441057 @default.
- W3201209654 cites W2023411248 @default.
- W3201209654 cites W2024556731 @default.
- W3201209654 cites W2028870122 @default.
- W3201209654 cites W2041990424 @default.
- W3201209654 cites W2043770554 @default.
- W3201209654 cites W2075535318 @default.
- W3201209654 cites W2078599070 @default.
- W3201209654 cites W2089264521 @default.
- W3201209654 cites W2089314377 @default.
- W3201209654 cites W2097033979 @default.
- W3201209654 cites W2105331429 @default.
- W3201209654 cites W2116123160 @default.
- W3201209654 cites W2125945977 @default.
- W3201209654 cites W2126765760 @default.
- W3201209654 cites W2127773062 @default.
- W3201209654 cites W2131744835 @default.
- W3201209654 cites W2136464769 @default.
- W3201209654 cites W2137611024 @default.
- W3201209654 cites W2140706912 @default.
- W3201209654 cites W2151057864 @default.
- W3201209654 cites W2152575748 @default.
- W3201209654 cites W2158698691 @default.
- W3201209654 cites W2163440660 @default.
- W3201209654 cites W2189898778 @default.
- W3201209654 cites W2276352055 @default.
- W3201209654 cites W2314389726 @default.
- W3201209654 cites W2324875921 @default.
- W3201209654 cites W2467076941 @default.
- W3201209654 cites W2523275656 @default.
- W3201209654 cites W2534346626 @default.
- W3201209654 cites W2600291882 @default.
- W3201209654 cites W2606728238 @default.
- W3201209654 cites W2734623277 @default.
- W3201209654 cites W2738834389 @default.
- W3201209654 cites W2743880227 @default.
- W3201209654 cites W2792175537 @default.
- W3201209654 cites W2795482357 @default.
- W3201209654 cites W2799541216 @default.
- W3201209654 cites W2810139123 @default.
- W3201209654 cites W2891784522 @default.
- W3201209654 cites W2897523292 @default.
- W3201209654 cites W2908687015 @default.
- W3201209654 cites W2911964244 @default.
- W3201209654 cites W2913323966 @default.
- W3201209654 cites W2958864865 @default.
- W3201209654 cites W2982569617 @default.
- W3201209654 cites W2997778075 @default.
- W3201209654 cites W3016294703 @default.
- W3201209654 cites W3034771412 @default.
- W3201209654 cites W3040745497 @default.
- W3201209654 cites W3042093008 @default.
- W3201209654 cites W3061690163 @default.
- W3201209654 cites W3095742619 @default.
- W3201209654 cites W3110963268 @default.
- W3201209654 cites W3114692783 @default.
- W3201209654 cites W3164977424 @default.
- W3201209654 cites W4249374789 @default.
- W3201209654 cites W4250523508 @default.
- W3201209654 doi "https://doi.org/10.5194/nhess-21-2773-2021" @default.
- W3201209654 hasPublicationYear "2021" @default.
- W3201209654 type Work @default.
- W3201209654 sameAs 3201209654 @default.
- W3201209654 citedByCount "16" @default.
- W3201209654 countsByYear W32012096542022 @default.
- W3201209654 countsByYear W32012096542023 @default.
- W3201209654 crossrefType "journal-article" @default.
- W3201209654 hasAuthorship W3201209654A5010801785 @default.
- W3201209654 hasAuthorship W3201209654A5021458018 @default.
- W3201209654 hasAuthorship W3201209654A5023988759 @default.
- W3201209654 hasAuthorship W3201209654A5025329464 @default.
- W3201209654 hasAuthorship W3201209654A5052185723 @default.
- W3201209654 hasBestOaLocation W32012096541 @default.
- W3201209654 hasConcept C105795698 @default.
- W3201209654 hasConcept C121332964 @default.
- W3201209654 hasConcept C126645576 @default.